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Impact Statement

This PhD has resulted in the creation of a dedicated database of zinc binding sites

(ZincBindDB) and tools for easily accessing it, predictive models for predicting zinc

binding sites in proteins (ZincBindPredict), and a novel Python library for analysing

protein structures (atomium).

There was previously no such resource for collating zinc binding sites, and so the intro-

duction of one facilitates research into zinc binding sites generally by giving researchers

in this field a convenient, centralised repository of the sum of all knowledge of zinc bind-

ing sites for which there is structural information — where no such centralised repository

existed before. This underpins and supports research into a diverse area of biology. The

codebase is also open source and highly extensible, and could be expanded to support

other metals as required.

Zinc binding is a property of about 10% of proteins, and is particularly important in

certain enzyme reactions. Knowing whether a protein binds to zinc can offer insights

into its function, and knowing precisely where it binds zinc can show the mechanism

by which it carries out its intended function, as well as provide suggestions as to how

pharmaceutical molecules might disrupt or enhance this function where required for

medical interventions. The tools developed here make it easier to computationally assess

whether a protein binds zinc, and where it does if so - aiding these endeavours.

The newly developed Python library atomium makes studying and analysing protein

structures easier for Python programmers, specifically giving them the ability to study

higher order assemblies of protein chains called biological assemblies, which was not

possible with the existing BioPython library. This makes structural biology research

more efficient.
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Abstract

Zinc is one of the most important biologically active metals. Ten per cent of

the human genome is thought to encode a zinc binding protein and its uses en-

compass catalysis, structural stability, gene expression and immunity. Knowing

whether a protein binds to zinc can offer insights into its function, and knowing

precisely where it binds zinc can show the mechanism by which it carries out

its intended function, as well as provide suggestions as to how pharmaceutical

molecules might disrupt or enhance this function where required for medical in-

terventions. At present, there is no specific resource devoted to identifying and

presenting all currently known zinc binding sites. This PhD has resulted in the

creation of ZincBind — a database of zinc binding sites (ZincBindDB), predictive

models of zinc binding at the family level (ZincBindPredict) and a user-friendly,

modern website frontend (ZincBindWeb). Both ZincBindDB and ZincBindPredict

are also available as GraphQL APIs. The database of zinc binding sites currently

contains 38,141 sites, and is automatically updated every week. The predictive

models, trained using the Random Forest Machine Learning algorithm, all achieve

an MCC ≥ 0.88, recall ≥0.93 and precision ≥0.91 for the structural models (mean

MCC = 0.97), while the sequence models have MCC ≥ 0.64, recall ≥0.80 and pre-

cision ≥0.83 (mean MCC = 0.87), outperforming competing, previous predictive

models.
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Chapter 1

Introduction

Proteins are polymer chains of amino acid residues, and while the chemical diver-

sity of the twenty canonical amino acids utilised in Biology can offer proteins a

staggering variety of folds and functionality, there remain chemical processes that

are not possible using only this chemical species. Consequently, many proteins

use cofactors — chemicals which associate with the protein but are not generally

covalently bound to them.

In order for a protein to induce this association to happen, it must present a region

of its surface to which the cofactor in question will experience an attraction, and

for which association will be thermodynamically favourable. The residues that

make up this attractive region are called binding sites.

Metal atoms are a common cofactor. In this case the binding site is a metal

binding site, and when the metal is zinc, it is a ‘zinc binding site’.

Clearly, zinc will only experience an attraction towards certain kinds of protein

surfaces, and so proteins which need to attract a zinc cofactor will have to present

surface residues capable of doing this. It should be possible to predict, therefore,

whether a protein’s structure has a potential zinc binding site on it because only

certain residues in certain geometric configurations will be capable of creating this

high affinity for zinc. Furthermore, because structure is determined by amino acid

sequence, it should in principle be possible to predict zinc binding capabilities

from protein sequence.

1
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This PhD project is an attempt to develop novel methods for doing so. Being able

to predict whether a protein binds zinc from its sequence alone offers valuable

insights into the function of the resultant protein, and allows entire genomes to

be quickly searched for potential zinc binding proteins. Being able to predict

zinc binding in a protein structure can reveal mechanistic information about how

it carries out its function, as well as offering insights into how pathological zinc

binding associated with that protein might be addressed. While there are previous

methods for doing both of these things, this PhD project uses an entirely novel

approach for doing so, backed by a comprehensive survey of all known zinc binding

sites.

1.1 Zinc

1.1.1 Cofactors

Proteins are an expression of the information content of genetic material, and are

the means by which the information content of that genetic material is effected.

The translation process maps three-nucleotide codons to amino acids, building up

proteins as polypeptide chains of some combination of twenty of these building

blocks. These amino acids all contain the same atomic backbone, but each has its

own unique side chain, and between them the twenty amino acid side chains cover

a diverse range of chemical properties. There are hydrophobic and hydrophilic

side chains, side chains of varied length, and varied electronic charge.

However, while this ‘polypeptide-space’ is certainly vast, the different possible

combinations and orientations of the twenty amino acid side chains still represent

a small subset of total chemical space, and there are limits to what proteins can

achieve using only these chemical species. The principal atoms involved (carbon,

nitrogen, oxygen and sulphur) are all clustered at the upper right corner of the

periodic table, all have broadly similar electronic properties, and are all similar in

size.

Other regions of the periodic table are not available to evolution by the direct

means of encoding them with DNA — there is no codon that will cause them to
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be incorporated directly — but these other chemical species can be incorporated

through other means. The three-dimensional structure of a protein is determined

by primary structure, so the genetic code can create a protein which presents a

region of its surface that the ‘desired’ (in the evolutionary sense) chemical species

will be attracted to and will associate with the protein through non-covalent means

(assuming it is present in the protein’s environment). These are ‘cofactors’.

While there are many organic, molecular cofactors in use, metal ions — particu-

larly transition metal ions — have particular properties that make them very useful

as cofactors. To understand why this is, it will be necessary to briefly review the

electronic structure of atoms, show how transition metals are distinguished by

their particular electronic structure, and then look at how zinc’s properties are

unusual by the standards of other transition metals.

Atoms’ electrons are arranged into energy levels, which are in turn sub-divided into

orbitals - regions of space in which electrons will usually be found. For example,

atoms can hold two electrons in the first, lowest energy level, which has a single

s-orbital. The second energy level can hold eight electrons, with one slightly lower

energy s-orbital and three slightly higher energy p-orbitals. This describes the

electron arrangement of the first ten elements.

The third energy level is slightly more complicated. It has three sub-levels (an

s-orbital, three p-orbitals, and five d-orbitals) but the d-orbitals are actually in a

higher energy state than the s-orbital of the fourth energy level, which ‘fills up’

first. The order in which the orbitals fill up is therefore 1s2s2p3s3p4s3d4p and so

on (see Figure 1.1). An atom with thirteen electrons (i.e. aluminium) will have its

thirteenth electron in a 3p orbital, an atom with nineteen electrons (potassium)

will have its nineteenth electron in a 4s orbital, and only once an atom has to ‘add’

a twenty-first electron (scandium) will the 3d orbitals be used.

Atoms which use these d orbitals — the transition metals — have unusual proper-

ties not encountered in previous atoms as a consequence. And it is precisely these

properties that make them so useful to proteins, and why evolution has driven

proteins to acquire them.
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Figure 1.1: Stylistic representation of atomic orbitals, showing levels 1 (blue),
2 (green), 3 (orange) and 4 (red). The difference in energy levels becomes less
pronounced further out, to the point where difference in orbitals within these
levels becomes greater than those between them by level 4. It is for this reason
that the highest energy orbitals of level 3 (3d) are higher in energy than the
lowest energy orbitals of level 4 (4s). The distances shown here are not to scale

with the actual energy differences.
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1.1.2 Transition Metals

Transition metals are often employed as cofactors by proteins, particularly in catal-

ysis. As they occupy a different region of electron configuration space than the

organic non-metal atoms that make up the biological amino acids (for reasons just

outlined), they can provide functionality that would otherwise be unavailable.

Atoms ‘prefer’ to have full energy levels and sub-energy levels — in the sense

that if they are in an environment which draws electrons away from them (an

oxidising environment) it will be energetically favourable to lose whatever number

of electrons causes them to fall back to the last filled level, emptying the highest

energy level. Likewise, if in an electron-rich environment in which electrons are

‘pushed’ to the atom (a reducing environment), they will prefer to take only the

precise number of electrons which fills the current energy level.

For elements before scandium, this is straightforward: energy levels are far apart,

and there is generally only one clear point to fall back to, or advance to. Sodium

for example, has a single 3s electron, so when in an oxidising environment it can

relinquish this one electron, and become Na+. It has a single oxidation state.

Once d-orbitals start being filled however, this becomes less straightforward. Rather

unintuitively, when it comes to losing electrons, different rules govern which en-

ergy levels are the first to be unfilled — the 4s electrons can be considered the

highest energy, and these will be lost first. Therefore most atoms with unfilled

d-orbitals can adopt the 2+ oxidation state. The d-orbitals are rather close in

energy level, so if there is further oxidative pressure, these can be lost too. This

property of having multiple stable oxidation states is one of the chief characteris-

tics of transition metals. It is partly for this reason that transition metals are so

widely employed by evolution as protein cofactors, particularly in proteins which

catalyse reactions — enzymes. A common mechanism for catalysing a reaction is

to stabilise an otherwise very thermodynamically unfavourable intermediate that

might have a strong charge associated — by using a chemical species which can

have one oxidation state in its native state, but which will happily switch to a more

oxidised form, the excess charge from the reaction intermediate can be temporarily

‘stored’ in the cofactor, stabilising the intermediate.
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As cations, the transition metals also act as efficient Lewis acids — they can

accept lone pairs of electrons. This is also useful in catalysis as it can stabilise

intermediate structures by withdrawing excessive negative charge from them. This

achieves a similar effect, but does so using a different mechanism. The metal atom

is not being oxidised, however.

Another curious property of atoms with partially filled d-orbitals is the so-called

breaking of degeneracy. In a single, uncharged atom of such elements, the five

d-orbitals are said to be degenerate, in the sense of having identical energy levels.

This is also true when oxidised, but when these charged ions interact with a

solvent molecule or other ligands, some d-orbitals end up closer than others to the

orbitals of the incoming ligand, entering a higher energy state than the others.

The previously uniform d-orbitals split into two slightly different energy levels,

and the previous degeneracy is said to have broken.

This confers some unique properties on these elements, most visibly that of colour.

The electrons will prefer to occupy the lower energy d-orbitals, but the energy gap

between them is small enough as to be in the visible light range, so light passing

through a solution of these ions will have the corresponding wavelength absorbed,

with the energy used to ‘promote’ the electrons and with the light not absorbed

determining the solution’s colour.

It also means that different ligand geometries are associated with different changes

in energy, meaning that certain geometries end up being preferred over others. This

has implications for proteins, which must fold in such a way that the liganding

residues adopt the correct geometry.

Unsurprisingly then, many proteins have evolved to take advantage of these useful

properties of transition metals by presenting binding sites on their surface that will

acquire one of them. This is generally done by bringing residues with available

lone pairs into close proximity to each other, in an arrangement that matches the

dimensions and orbital geometry of the desired metal, meaning that the geometric

properties of these binding sites tend to match the particular properties of the

metal atom they are adapted to. Each metal has its own particular properties

arising from its electron configuration, and zinc’s are some of the most atypical.
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1.1.3 Zinc’s Unique Properties

Though a transition metal in the sense that it has ten d-electrons but no 4p

electrons, it is an unusual one, to the point where it is often not even classified

as one1. Many of the properties of transition metals derive from partially filled

d-orbitals, which zinc does not have. The five fully filled d-orbitals are relatively

stable, meaning it can only really be oxidised to 2+ by losing its 4s electrons, so it

has just one oxidation state. Electrons cannot be ‘promoted’ from one d-orbital to

another in solution as all spaces in the orbitals are already filled, so it has no colour

or spectroscopic activity when in solution. At first glance, zinc would appear to

be rather unremarkable metal, unworthy of much consideration by evolution.

However, the data shows otherwise. About 10% of all proteins in the human

genome are zinc proteins with a zinc binding site [1] — making it the second most

abundant such metal after iron. It is also the only metal found in all classes of

enzyme (hydrolases, oxidoreductases, lyases, transferases, ligases and isomerases)

[2]. Clearly, evolution has found zinc very useful.

In fact it is precisely that unremarkableness that has made zinc so attractive.

Having just one oxidation state may mean that it cannot hold onto an electron

mid-reaction, but it also means that the ion will retain its electronic properties in

a wide range of reducing environments, and its status as a particularly good Lewis

acid means it is still very useful in catalysis.

Its lack of spectroscopic activity may make zinc solutions colourless, but the same

arrangement of d-orbitals that causes this also means that there is no energetic

penalty for zinc coming out of solution (where it is octahedrally coordinated) and

into the binding site because such a transition is accompanied by a rearrangement

of the orbitals geometrically. In the case of metals with incomplete d-orbitals, more

of the orbitals are forced into higher energy states. For zinc, there is no energetic

penalty in moving from the octahedral geoemtry associated with solvation by

water, to the (typically) tetrahedral geometry of protein binding. This equivalence

1It is not particularly worthwhile to debate whether zinc is or is not a transition metal
objectively — transition metals are an artificial category invented to serve a particular purpose,
and the edges of that category are blurred. By some definitions it is, but by other definitions it
is not. What really matters are its objective physical/chemical properties, not the name of the
category humans have assigned it to based on those properties.
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in ‘Ligand Field Stabilisation Energy’ gives zinc an advantage from the protein’s

perspective [3].

As a somewhat unusual metal cofactor, the corresponding zinc binding sites that

proteins form around them also have unique properties, distinct from those of

other cofactors, and other transition metals. These will be explored next.

1.2 Properties of Zinc Binding Sites

What do zinc binding sites ‘look like’ from a structural point of view? What are

their properties at the atomic scale?

These questions were addressed by researchers from some of the very first crystal

structures, and continue to be a topic of research today. The properties of zinc

binding sites that distinguish them from other spatially proximate clusterings of

residues are ultimately what must be used to predict them, so the advances in

this field are crucial to any zinc binding prediction model. The history of our

understanding of these properties will be reviewed here.

By the middle of the 1980s, a number of structures had been produced and already

a few general themes that would recur over and over again were observed. Catalytic

sites (those which are involved in the catalysis of some reaction) tended to have

three protein ligands and one water ligand, whereas structural sites (those not

involved in catalysis, but which stabilise local regions of the protein) generally had

four protein residues, for example. One of the first reviews in this area to examine

the structures obtained so far identified coordination by sulphur and nitrogen, and

tetrahedral geometry, as the two defining characteristics of zinc binding sites [4].

With the benefit of hindsight we can see that this is a slight simplification, but it

shows that a consensus about ‘typical features’ was beginning to form. Another

early review would go on to list most of the basic properties of zinc binding sites

we now know — their division into structural and catalytic sites, the near ubiquity

of water in catalytic sites, the much stronger preference for tetrahedral geometry

in structural sites than in catalytic sites, and the preference for histidine, cysteine,



Chapter 1. Introduction 9

aspartate and glutamate residues [2]. These properties would be repeated and

elaborated upon by a number of similar reviews in this period [5–7].

The more structures that were available, the more detailed the inferences that

could be made became. A series of reviews looked at typical atom geometries

in cysteine binding [8] and histidine binding [9], and while both papers looked at

metal binding generally rather than zinc, in both cases the observations were found

to be largely metal-agnostic. It was shown that cysteine generally coordinated the

metal such that the Zn—S-Cβ-Cα torsional angle is either 90◦ or 180◦, and that

histidine residues generally coordinate the metal via their NE2 nitrogen atom,

with the metal lying in the histidyl plane.

Another structural characteristic of zinc binding sites (and indeed metal binding

sites generally) was the ‘hydrophobic contrast’ that seemed to exist around them

[10, 11]. Briefly, this is the observation that metal atoms in a protein tend to

be surrounded by a shell of hydrophilic atoms (as might be expected), but that

these were in turn surrounded by unusually hydrophobic atoms (measured against

the average ‘background’ hydrophobicity of the other residues). This could be

implemented as a function of coordinates, which would be at a maximum when

centered in such a concentric sphere. It was shown that maxima of this function

would cluster around metal binding sites.

Whilst it might be expected that zinc binding sites would have some kinds of

structural consensus, it is not immediately obvious that they should have any

kind of predictable sequence patterns. However in 1989 it was shown, albeit from

a relatively small dataset as existed at that time, that catalytic zinc binding sites

seemed to have characteristic “short and long spacer sequences” [12]. That is,

the three residues that make up catalytic binding sites seem to be made up of

two residues separated by a small stretch of amino acids (around five) and a third

residue that is much more distal on the sequence. They proposed that the first

two residues were acting as a nucleus, a proto-site that is stabilised by the third

residue. This pattern was confirmed by later studies, with the short spacer being

found to be generally 2 to 7 residues long [13].

This was not however the first sequence motif associated with zinc binding sites

- a few years previously a curious pattern of residues in a transcription factor
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sequence led to the discovery of a new class of zinc protein, and the creation of a

entirely new field of genome engineering.

In 1985 it was observed that a particular transcription factor in the model organ-

ism Xenopus laevis was a zinc protein, and moreover that it seemed to be made

of globular subunits of roughly equal mass, each with a repeating C...C...H...H

motif [14]. They hypothesised that perhaps this particular transcription factor

was essentially a string of zinc binding domains — referred to as ‘fingers’ — each

stabilised by a zinc atom at the base. The very regular repeating pattern of thirty

residues, each with these four residues in the same location, was key in uncovering

these ‘zinc fingers’. While not initially thought to be widespread, in the months

and years that followed, more examples of these genome-interacting proteins with

similar sequence motifs were identified [15]. Finally, in 1989, the structure of the

original zinc finger was solved, largely confirming the initial speculations about

the structure of this protein, and the role of zinc within it — the domain was

a finger-like projection which could bind DNA bases at the tip, and which was

stabilised by a C2H2 zinc binding site at the base.

The field continued to grow. By 1998 there were thought to be at least 500

zinc finger proteins, and possibly as many as 1% of all mammalian genes [16].

Much of this field is concerned with the ‘fingertip’ end of zinc fingers, which

actually implements the DNA-recognising properties, though for the purposes of

this project it is the base that is of more interest. There are a few points to take

away from this brief digression. The first point, which will be returned to in the

section on zinc binding site prediction, is that the zinc fingers were discovered

because of a characteristic sequence pattern, emphasising that such prediction is

both possible and potentially offers many insights. The second is that until this

point, much of the interest in zinc binding sites was in catalytic zinc binding sites;

there were fewer structural sites available to study, and most reviews from this

period addressed them last, if at all. From this point on however, many more

became available to study, and it became clear that they were responsible for

much of zinc’s ubiquity across the proteome.

Most of the early work on characterising the typical properties of zinc binding

sites was done by manually surveying the crystal structures available and drawing
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conclusions from them. But as the 1990s wore on and the number of such structures

available reached the hundreds, this became increasingly impractical. Instead,

from this point onwards, the sites would have to be collated algorithmically from

the Protein Data Bank [17].

The first such database survey was in 1998. They found 387 zinc proteins, and

after excluding some on quality and experimental technique factors, they were

left with 111 [18]. Some of their findings were in line with what was already

known: the three residue/one water combination for catalytic sites, the preference

for tetrahedral geometry, histidine’s preference for one nitrogen over another (by

a ratio of 70:30, they found). They also identified a new, almost ubiquitous, motif

across zinc binding sites which they call the ‘elec-His-zinc’ motif whereby zinc is

liganded by a histidine which in turn forms a hydrogen bond with an electron

donor of some kind.

This was followed by other reviews [19–23], showing similar results: that zinc-

ligand distances are similar to those found in small molecules, and further sub-

categorising the ever increasing number of zinc finger proteins.

Increasingly, the modes of classification were becoming more sophisticated too.

Initially, two kinds of binding site were recognised: catalytic sites, which catal-

ysed some metabolic reaction, and structural sites, which did not and just sta-

bilised structure. Later came the recognition that some sites required the action

of multiple metals in a single functional unit — either multiple zinc atoms, or a

zinc atom in conjunction with another metal atom. From 2001, a fourth kind was

recognised, interface binding sites [24]. It had been known since the early days of

insulin research, of course, that in some cases zinc atoms could stabilise polymeric

structures, but by this point there was enough data to classify these as their own

category, with their own properties — that cysteine is very underrepresented in

them, that stabilisation is often done by beta sheets rather than alpha helices

(common in other zinc binding sites), and even evidence that these sites could

also have catalytic roles in addition to their role in quaternary structure.

A more in-depth look at the differences between catalytic and structural sites

even seemed to offer a means of automatically classifying zinc binding sites [25],

though generally during this period this was a task done manually. They confirmed
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that catalytic zinc binding sites tended to have more unusual atom distances and

geometries (imposing a ‘strain’ upon them that we will return to in the following

section), and looked in detail at catalytic sites’ disdain for cysteine residues. They

found that a relatively simple method of assuming a site is structural if it has more

than one cysteine residue and no water, and assuming it is catalytic otherwise,

assigned the correct label in 90% of cases in their dataset. They also looked at the

possibility of using atom distances to classify zinc binding sites, though it must

be remembered that when looking at differences in atom distance on the order

of single Ångströms, structure with poor resolution should be removed from the

dataset if you are to make sensible inferences.

Atom distances themselves have been a major focus of research. A typical example

is a 2007 review of 994 structures [26], showing that histidine approaches zinc more

closely than cysteine (2.11 Å versus 2.32 Å on average) with water distances gen-

erally somewhere between those two figures. The vast majority of metal liganding

atoms are within 3 Å of the metal [27]. It has been speculated that some non-zinc

metal-ligand distances are longer than might otherwise be expected because of

the ‘Jahn-Teller effect’ [28]. This phenonemon, like the Ligand Field Stabilisation

Energy that makes zinc so attractive in the first place, results from the different

energy levels of the d-orbitals in these metals which distorts them and lengthens

the bond. This does not affect zinc binding, but does affect other metals.

The properties of zinc binding sites are not just limited to the metal itself and the

residues that coordinate it. It is increasingly recognised that the ‘secondary shell’

around the primary residues are of great importance, by providing a network of

stabilising hydrogen bonds around the liganding residues to keep them in their

precise orientation [24]. This concept has been extended to the idea of a ‘Minimal

Functional Site’ [29], proposed as the smallest unit of metal binding that should

be used when classifying and studying the phenomenon. The authors in this case

used all residues within 5 Å of a liganding residue, but more important is the

general idea that the residues around the coordinating residues, which are often

part of secondary structure, are crucial to understanding the metal binding itself.

There have also been reviews into the efficacy of these database reviews at all,

and the limits of what can be inferred from them. A 2005 review [30] suggests
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that while purely spatial properties, such as the location of the metal ion and its

liganding residue identities, can be provided reliably by crystallography, often the

precise coordination geometry does not agree with spectroscopic data, and should

be treated with caution. They also warn against trying to infer redox state from

crystallography, though this does not particularly apply to zinc. A later review

[31] pointed out that reported atom distances increase as a function of resolution,

and stresses the need to take this into account. They criticise a number of earlier

studies for treating unlikely geometries or electronic configuration as ‘real’, or

for treating zinc salts and crystallographic artefacts as biologically relevant zinc

binding sites.

Finally, it is worth examining the numerous secondary databases that have been

created over the past decade and a half relating to zinc binding sites, and which

offer a web-accessible means of viewing the properties of zinc (though usually

metals generally) binding sites.

• MESPEUS was one of the first — a general-purpose database of metal bind-

ing sites generally, which focused on providing basic geometric information

[32], and which allowed basic surveys of atom-length patterns to be carried

out.

• ZifBASE had a more specific focus — this was a database of zinc fingers

specifically, and provided much more than structural information from the

PDB: sequence information, DNA targets, and physiochemical properties

like isoelectric point were also provided [33].

• Probably the most important resource in this area is MetalPDB [34], a

database of metal binding sites, similar to MESPEUS, but with more in-

formation and a more sophisticated means of classifying them. They divide

their sites into ‘equistructural sites’ - (those which have binding sites of sim-

ilar structure) and within those ‘equivalent sites’ (equistructural sites with

the same metal). They place a great focus on the secondary shell, as part

of the ‘Minimal Functional Site’ concept they introduced earlier, and have

recently updated the resource with a greater focus on apo-structures [35].

They have also provided a number of related resources, such as MetalS3
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[36], a tool for searching the database via structure pattern rather than key-

word, and tools for classifying sites based on similarity [37]. An issue with

MetalPDB however is its reliance on asymmetric units in the PDB files they

parse. Often the raw coordinates of such files represent only the repeating

unit of the crystal structure, and the actual ‘real’ biological protein must be

assembled from that data using transformation matrices contained with the

files. MetalPDB (and most other resources) do not do this, which makes

some of their ‘binding sites’ rather unrealistic.

Another impression one gets immediately when surveying these resources is that

with the exception of MetalPDB, all of these resources have ceased to exist — their

URLs go nowhere, or their sites are broken beyond reasonable use and obviously

not maintained. This is a problem generally with academic software, in which the

creation of resources is funded by initial grants. However, because they do not

generate revenue themselves, they need grant funding of some kind in perpetuity

if they are to remain online — which they generally do not have. The solution to

this problem is not obvious, and in any case beyond the scope of this PhD, though

the burden that this maintenance poses for a lab or organisation can be lightened

somewhat by automating as much of the process as possible (where appropriate).

Other resources are focused more on validating or describing a given metal binding

site that it is presented with, such as the coordination geometry classifier FindGeo

[38], or the validation tool CheckMyMetal [39], which uses known properties of

metal binding sites to determine if a proposed binding site is realistic.

1.3 How do Zinc Binding Sites Work?

In parallel with an increasingly clear understanding of the properties of zinc bind-

ing sites, theoretical and analytical research has been performed on the mecha-

nisms and physics underpinning zinc binding. These two areas of research are

complimentary and interconnected, with the properties in large part explained by

the physics of the binding sites, and insights into the mechanisms derived from

experimental observations.
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One of the earliest concepts to be introduced in this area was that of the ‘entatic

state’ of metals in biology [40], in the 1960s. Essentially this was the idea that

metal atoms in proteins have different geometries and properties than they do in

smaller molecules and which they would ‘prefer’ energetically, because the protein

backbone is able to impose restraints upon it. It is a kind of ‘strain’ that the

protein’s overall conformation imposes on the metal and which gives the metals

any unique properties they may posses which are not found outside of biology.

For example, it may cause an otherwise unfavourable metal oxidation state to be

favoured over another, as can be seen with iron.

This concept was later elaborated upon to show that this strain should be thought

of as a two-way process [41]. The authors note that “[They] described the valuable

strains induced by the protein in the metal... but they could equally well have

pointed to the strain induced in the protein by the metal to it. The overall idea

was that of catalytic perfection induced by strain” — a strain which makes the

enzyme “energetically poised for catalysis” [42].

This is a concept that applies to metalloproteins, but once it started to become

apparent just how widely used zinc was in the 1980s, attention began to turn

to answering the question of why zinc in particular was of such apparent use to

proteins.

One property noted early on was that zinc atoms have a full d -shell, making it

slightly unusual among transition metals[42]. This means that when ionised, zinc

will lose its two 4s electrons to become 2+, but there are no other oxidation states

that it can realistically adopt — it is ‘redox inert’. This means that the protein

can rely upon the metal retaining its oxidation state regardless of the oxidation

environment it finds itself in, a stability whose utility is clear.

Another property of this full d-shell that would be elaborated upon later was the

absence of a phenomenon known as ‘ligand field stabilisation energy’ [3, 43–45],

as previously outlined. Briefly, this refers to the fact that atoms with incomplete

d-shells, like most other transition metals, have preferred coordination geometries

and experience energetic penalties if coordination angles deviate from this. If the

d-shell is full however, no one geometry is preferred over another, which offers the

protein much more flexibility.
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Another property of zinc that is revisited time and time again in the literature

is zinc’s role as a Lewis Acid; it will readily accept electron pairs from electron

pair donors [46]. It has been noted that while other metals are superior Lewis

acids from a purely chemical standpoint, zinc will more readily form tetrahedral

complexes [47], making it frequently the Lewis acid of choice.

This effective electron-pair-accepting that zinc exhibits is important because it is

useful wherever zinc is used in catalysis. One of the first zinc enzymes to have

its precise mechanism of action investigated was carboxypeptidase A, a digestive

enzyme. It was suggested that the water molecule that coordinated zinc as one of

its ligands was being ‘activated’ by zinc — its electron pairs were being withdrawn

by the metal, making it less able to retain its hydrogens and becoming the more

reactive hydroxide. Some structural evidence to support this came from the crystal

structure of carboxypeptidase A in complex with a substrate that was known

to be hard for the enzyme to digest for reasons at that time unknown. The

crystal structure revealed that the substrate was inadvertently looping around

and coordinating the zinc atom, blocking the water molecule and accounting for

the much slower rate of hydrolysis [48]. Another means by which zinc can aid in

catalysis is by stabilising any negatively charged intermediate in the reaction by

offering a temporary repository for their electrons, as is the case with carbonic

anhydrase [49].

Indeed, multiple papers have emphasised this ‘primed’ property of catalytic zinc

sites. They have more distorted geometry than the more typically tetrahedral

structural sites [19], the liganding atoms tend to be further from the metal [25], and

they are generally more thermodynamically unfavourable when modelled quantum

mechanically [50].

The means by which protein residues interact with the metal can also have impor-

tant consequences. Aspartic acid and glutamic acid are both relatively common

zinc binding residues, each doing so via their side chain carboxylate groups. They

can either contribute one liganding oxygen atom (‘monodentate’ binding) or both

(bidentate binding) (see Figure 1.2). While early theoretical models suggested

that the different modes were determined merely by the other residue identities,

with more negative other residues favouring mere monodentate binding [51], it
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Figure 1.2: A zinc binding site demonstrating both bidentate binding via
two glutamate residues, and monodentate binding via one aspartate residue.
This visualisation is taken from ZincBind (binding site 6VDA-1), and is a site

in PDB 6VDA, a Thermotoga maritima transport protein [53].

has more recently been suggesting that a residue may use both. The so-called

‘carboxylate shift’ is theorised to occur when an acidic side chain in a catalytic

zinc binding site switches from monodentate binding to bidentate binding so as

to keep the number of coordinating atoms around the zinc constant, and thereby

reducing the activation energy of substrates entering and leaving the complex [52].

The reason for the preference for cysteine in structural sites has also received

attention. It has been proposed that cysteine residues transfer more charge to the

zinc atom, reducing the potency of its 2+ charge and making it less reactive [25].

Finally, it is worth bearing in mind that zinc does not become ‘part’ of the protein

as part of the translation process, but binds to the fully translated apo-protein,

in a process whose mechanisms are also crucial to understand. It is possible to

compare the apo- and holo-forms of zinc binding proteins using sequence identity.

For every zinc binding protein structure you have, you can search the Protein Data
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Bank for proteins with a highly similar structure that does not have zinc in the

same position. This is precisely what a 2005 review did [54] in a bid to investigate

the mechanisms by which zinc binds proteins in the first place. After looking

at 210 apo/holo pairs, they found that often, at least part of the coordination

shell is in place before the metal is in place. This is consistent with the ‘nucleus’

theory of the short and long spacer sequences, outlined above. Furthermore, they

found that in just 40% of cases was there any rearrangement of side chains upon

metal binding, and in just 14% of cases did this involve backbone rearrangement.

This mode of zinc binding is encouraging for efforts to predict zinc binding from

apo-structure, as we will see in the next chapter.

This zinc binding should also not be thought of as permanent. Metalloproteins

are in equilibrium with free metal + apoprotein, and the zinc binding will have

an on and off rate like any other complex. While this project is largely focused on

proteins where the zinc is essentially a permanent feature of the protein because

it is essential for some function, it has been pointed out that these are merely

proteins where the equilibrium is far to the right, and that all metal proteins lie

on a continuum in this regard, with zinc transporters (for example) having an

equilibrium further to the left [55]. This equilibrium constant is determined by

the geometry of the binding site, and the secondary shell around the liganding

residues seem to play a very large role in fine-tuning this affinity by exercising

careful control over the precise positioning of these side chains [56].

1.4 The Protein Data Bank

The ultimate data source for almost all the data used in this project is the Protein

Data Bank (PDB) [57]. This is a Bioinformatics Database jointly administered

by the Research Collaboratory for Structural Bioinformatics (RCSB), the Protein

Data Bank in Europe (PDBe) and Protein Data Bank Japan (PDBj) — each a

member of the overarching Worldwide Protein Data Bank (wwPDB). These or-

ganisations accept depositions of solved protein structures from researchers around

the world, releasing them as PDB structure files with four character IDs. There

are over 160,000 structures available in the PDB in 2021.
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These ‘solved structures’ contain the three-dimensional coordinates of the atoms

that make up a macromolecular structure — typically a protein or protein complex,

often with small molecules bound, but there are nucleic acid structures in the

Data Bank too, and increasingly large ribosomal structures. The structure files

also contain meta-data about the experiment which produced the raw data from

which the coordinates were calculated, details of any refinement done to those

coordinates, and annotations of the names and entity relationships of the molecules

present (which residues belong to which polymer, which small compounds have

binding sites in which polymer, which molecules are instances of the same biological

entity, etc.).

These three-dimensional coordinates are obtained by isolating the protein in ques-

tion, performing some kind of experimental, analytical technique on the sample,

and inferring the locations of the atoms from that data.

• By far the most common technique used is X-ray Diffraction. The sample is

crystallised such that the structure arranges itself in a single, solid repeating

lattice, and then X-rays are passed through this structure. This beam of

electromagnetic radiation is diffracted by the atoms of the structure and,

because the proteins are all aligned, this diffraction will create a discrete

‘diffraction pattern’ of spots on the photoreceptive surface behind the sam-

ple. Specifically it is electron density which scatters the X-rays, and it is this

which is detected. This pattern of spots can be used to generate an inferred

three dimensional map of electron density by using Fourier Transforms, from

which the location of the atoms themselves can be ‘fit’.

• Nuclear Magnetic Resonance (NMR) spectroscopy is another technique used

to generate atomic coordinates. Here the sample is placed into a very strong

magnetic field, which causes the quantum spin of the atoms’ protons to align

with this field. Pulses of radio waves are then passed through the sample,

which temporarily aligns the spin of the atoms with this electromagnetic

radiation. When they relax back into alignment with the magnetic field,

they emit radio waves which are detected, and which can be used to infer

the proximity of the different atom types in the sample. This contains enough
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information to build up a map of atom connectivity, and from this atomic

coordinates.

• An increasingly prevalent technique is Cryo-Electron Microscopy (Cryo-EM).

Rather than holding proteins in place by crystallising them into a repeating

lattice and inferring their coordinates using X-Rays, they are ‘flash frozen’

by rapidly lowering the sample’s temperature, and then probed with beams

of electrons.

Despite the increasing rate of submission of Cryo-EM structures, the majority of

structures considered in this project have still been solved with X-Ray Crystallog-

raphy.

The field of structural biology is diverse, but there are a number of concepts

from this field and the protein structures mentioned above which are of particular

importance to this project.

• Resolution. Typically given in Ångströms (0.1 nm), this is a single value

metric of the quality of a protein structure. It is essentially a measure

of how ‘detailed’ the electron density map is. High resolution structures

(confusingly these are those with lower values, around 1 Ångstoms) might

detect the contours of individual atoms within a protein residue for example,

whereas lower resolution structures (higher values, above, say, 3 Ångströms)

might merely have residue-shaped blobs. In analyses where the coordinates

of atoms need to be relied upon with reasonable precision, a common early

step on the pipeline is to discard structures with resolutions below some

threshold.

• R-values. Another single-value that represents the quality of a protein cre-

ated from X-Ray Diffraction. Part of the process of generating an electron

density map from a scattering pattern is an iterative process whereby the

researcher creates a putative set of coordinates, calculates what pattern of

scattering would theoretically correspond to those coordinates if they were

accurate, compares this with the actual scattering map, and refines the coor-

dinates based on the difference. This difference between the actual scattering
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pattern, and the scattering pattern that would produce a given set of coor-

dinates, is the R-value. A perfect match would be 0, but typical values are

around 0.2. A distinction is usually made between these R-values, and ‘free’

R-values, in which around 10% of the observations are removed before re-

finement, and then the refinement is performed on the remaining 90%, with

the free R-value a measure of how well the new simulated diffraction pattern

predicts the remaining 10%.

• Temperature factors. The above metrics apply to an entire structure, but

the quality of a set of coordinates might be better in some regions than oth-

ers. Temperature factors represent this localised quality, as each atom has

its own temperature factor. They are a measure of the uncertainty over the

atom’s position in space, with higher temperature factors indicating greater

uncertainty (representing either statistical uncertainty regarding where the

atom is likely to be, or actual variation in the atom’s location due to exci-

tation — hence the name ‘temperature factors’). This uncertainty can be

a single value ‘isotropic’ temperature factor (applying in all directions) or

‘anisotropic’ (directional uncertainty).

• Biological Assemblies. The raw coordinates of PDB structures as given con-

tain the ‘Asymmetric unit’, which is the repeating unit of the solved struc-

ture. This may not be the actual biologically relevant entity, so a number of

assemblies are generated computationally using this base unit, and their bi-

ological feasibilities calculated from metrics such as buried surface area and

the interaction strength of associated surfaces. These possible assemblies

are given in the metadata of the PDB files as transformation matrices, along

with the associated software-calculated metrics.

1.5 Conclusion

Zinc is a crucial metal for a wide variety of functions in biological systems, and

across a wide spectrum of organisms. Its chemical properties — particularly its

lack of redox activity which gives it an essentially permanent 2+ charge in physi-

logical environments regardless of the reducing/oxidising environment it finds itself
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in — make it uniquely useful to proteins in carrying out functions that they would

be unable to do with either the chemistry of the twenty canonical amino acids

(whose atoms are largely electron donors, not acceptors), or other transition met-

als (whose redox state can alter depending on the environment). Chiefly those

functions are the catalysis of reactions as a key component of enzymes, or as a

stabiliser of local protein structure — either a region of a single chain, or at the

interface between two chains.

While zinc has other occasional roles, such as as a cellular messenger, these two

primary roles require the zinc ion to be tightly and permanently bound to the

protein in question. This requires the protein to fold in such a way that it brings

together liganding residues for zinc that the metal will have a strong affinity for,

due to the geometry and chemical identity of the atoms in question. These zinc

binding sites have been examined in every greater detail as the number of zinc

protein structures has increased, and certain key properties of the binding sites

have been observed repeatedly at both the sequence and structure level.

Some of these characteristic features are the overwhelming use of histidine and

cysteine, and to a slightly lesser extent the carboxylate residues aspartate and glu-

tamate (with cysteine being more common in structural sites and the carboxylate

residues slightly more common in catalytic sites), the near ubiquity of tetrahedral

geometry of the liganding atoms, the presence of three liganding residues plus wa-

ter in catalytic sites and four residues in structural sites, and the typical liganding

distances.

Physically, the zinc binding sites seem to rely heavily on a network of stabilising hy-

drogen bonds holding the primary liganding residues in place, from the secondary

residues around them. Binding between the zinc atom and the binding site does

not usually rearrange the backbone of the protein signficantly. Zinc largely facili-

tates catalysis by stabilising the negative charges of any positively charged reaction

intermediates, making their existence less thermodynamically unfavourable for the

short amount of time that they exist.

The existence of these typical features and well understood mechanisms of action

is crucial in trying to predict zinc binding sites from structure or sequence, as it

means that there are particular properties to be looked for. The next chapter will
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examine the methods for making these predictors, and review previous attempts

at predicting zinc binding using these techniques.



Chapter 2

Computational Techniques

In this chapter, the pre-existing algorithms and other computational techniques

used to predict Zinc Binding Sites will be outlined.

It will not provide details of specific implementations used in this project, or

any novel techniques developed — those will be presented in later chapters. It

is instead meant to give a general mathematical background to these techniques,

and familiarise the reader with the terms that will be used in later chapters.

2.1 Machine Learning

2.1.1 Principles

This project ultimately created a predictor — something which can take either

a protein structure or a protein sequence, and determine where, if anywhere, are

zinc binding regions.

Machine learning is the use of existing data to create predictive models that can

take new data and make inferences about it. It ‘learns’ the characteristics of the

existing dataset and uses this to predict certain things about the new data. This

can be ‘unsupervised’, where the model identifies the internal structure of the

data and creates clusters from it, or it can be ‘supervised’, where the existing

data is labelled with some correct output, and the model learns how to predict

24
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Figure 2.1: Overview of the branches of machine learning.

the output based on the input characteristics. If the output is a discrete category,

this is classification; if it is a continuous value, it is regression. This is illustrated

in Figure 2.1.

This project uses supervised learning, because the dataset being used to train the

models already have the locations of zinc binding sites labelled.

When the inputs are passed to the model, they are done so as a set of ‘features’.

These are numerical characteristics that the model actually uses to learn what

kinds of input belong in which category. These are usually passed to the model

as a vector of numbers and classification is just the mapping of vectors to discrete

classes. Machine learning algorithms are ultimately mathematical functions, which

cannot take abstract concepts such as ‘zinc binding residues’ as inputs. Anything

which they accept must be turned into some numerical representation by making

numerical measurements of it — this is its ‘representation’. When preparing a

dataset, the researcher must decide which properties to use (feature selection) and

how to encode them numerically (the representation).
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Once the dataset has been processed, models must be ‘trained’ — a process which

varies from algorithm to algorithm, but which is the process by which the algorithm

changes its internal model to perform best on the problem it is given. It is given a

dataset to learn from, which in the case of supervised learning is a list of examples

of the type of object under consideration, each labelled with the outcome that the

algorithm must try to learn. Training here, in the general sense, is the process

by which the algorithm learns to develop rules that use the information given for

each object to predict the output.

The simplest approach would be to give the model the entire dataset and let it

learn from that. However the dataset is just a sample of the population of all the

kinds of objects it represents, and some of the properties that the model would

learn would in fact be statistical noise that is not representative or useful. If the

model is trained on all the data, it will learn these properties that exist only in the

sample, and will be a poor predictor when faced with other inputs — it is ‘overfit’.

To detect this, the dataset is split into test and training sets, with the former

being used to assess the model’s performance on data it has never seen before

once the model is trained. Additionally, when the model is training and tuning

its parameters, it further sub-divides the training set into ‘folds’ and reserves one

fold for testing/optimising during training.

2.1.2 Supervised Learning Algorithms

Supervised learning is the process by which a system learns to map input vectors

representing the measurements of some object to discrete output categories, based

on the values of those input vectors. However, there are multiple methods and

algorithms for doing this. Each of them is suited to different kinds of problem,

and these methods will be outlined here.

The most basic machine learning algorithm tries to find the parameters to some

function of the input values, and then finds a threshold above which the positive

class should be predicted. For example, some of the earliest methods to be de-

veloped were the Perceptron and the Adaptive Linear Unit. These create a linear

function, with parameters that are learned during training. In this case ‘learning’
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means that the output of this function is evaluated for every input in the training

set, the sum of the squared errors is found (which acts as a score of how poorly

the model has performed with its current parameters), and the derivative of this

squared error function is used to change the values of the parameters using gra-

dient descent. Gradient descent is a common optimisation algorithm that tries to

find the minimum of a function, in this case the sum of squared errors as a func-

tion of input vector. In practice, a variant of gradient descent called stochastic

gradient descent is generally preferred, where a random subset of the training data

is used each time. This speeds up the rate of optimisation and allows the function

to escape local minima.

Linear perceptrons are relatively primitive. They use a linear function and so can

only separate data that is linearly separable in the first place, meaning that a

line, or plane (or higher dimensional ‘hyperplane’) can divide the data in space.

However they do illustrate many of the principles that are common to most or

all supervised learning algorithms. Many of them have the overall architecture

of a function with learned parameters and a threshold, for example. They also

illustrate the difference between parameters and ‘hyperparameters’. A parameter

is something the algorithm itself learns, and in this case the parameters are the

coefficients of the linear equation, and the threshold value. So for n-dimensional

input vectors, there will be n + 1 parameters to learn. A hyperparameter on the

other hand is a ‘setting’ that the user manually sets. For example, the number of

passes through the data to make (epochs).

A more sophisticated variant of the perceptron is a supervised learning algorithm

called logistic regression. In logistic regression, you still have a linear function

whose coefficients the system tries to learn using (usually stochastic) gradient

descent. However in this algorithm, before checking the output of the function

against a threshold, the value is passed into a second ‘activation function’ which

is not linear. In this case the activation function is a sigmoid-like function that

maps all inputs to some value between -1 and 1. This logistic function takes the

form:

logistic(x) = 1
1+exp(−x)
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Figure 2.2: An example of Support Vector Machines applied to two dimen-
sional inputs. The blue line is the decision boundary, equidistant between the
support vectors (which form the dotted black lines). The orange lines are the
other possible decision boundaries that a perceptron might arrive at, which

would be much less generalisable.

Support Vector Machines (SVMs) are another variant of the basic perceptron

model which is widely used in classification tasks. In this case, the learning al-

gorithm is iterated until the distance between the closest input vectors to the

decision boundary (the support vectors) is maximised — an extra consideration

that increases the cleanness of separation between the categories (see Figure 2.2).

Not all classification algorithms take this form of fitting the parameters of a func-

tion and then applying a threshold cutoff.
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Decision trees, for example, divide the input space into regions by a series of

branching cutoffs. At the first ‘node’, a dimension and a value which maximally

separates the categories is picked, bifurcating into two branches. For each of these

two branches, another bifurcation takes place, and so on until the categories are

separated. The number of nodes (the depth) is a hyperparameter that is chosen

beforehand. This can be a very important consideration — too few nodes, and

the algorithm will usually not be able to cleanly separate the data, with low recall

and/or precision being achieved. However, if there are too many branches, the

model will become overfit — it may perfectly separate the training data, but in

doing so will learn statistical noise present only in that sample, reducing its ability

to generalise.

The metric that decision tree algorithms use to identify how to bifurcate is entropy,

a measure of uncertainty in this case. At each bifurcation point the algorithm must

select a feature and a cutoff value for that feature, and it does so based on the

combination that would best split the two output categories under consideration

(i.e. the combination that would most reduce entropy).

An extension of the decision tree that can be very effective is the random forest

classifier. This algorithm generates multiple decision trees (the precise number

being a tunable hyperparameter), each of which is trained on a random subset of

the available training data. When a new input is to be classified, each of the trees

classifies it according to its own training, and a majority vote is taken to deter-

mine the forest’s verdict as a whole. This is an example of ‘bagging’ (bootstrap

aggregating), where the noise and errors of individual models are canceled out in

averaging.

Another supervised learning classification algorithm is K-Nearest Neighbours. This

is a slightly unusual algorithm as it has no parameters that are tuned during

training. Instead ‘training’ in this case simply means giving it the entire training

dataset, which it stores, and this entire dataset is used when classifying new in-

puts. The k closest vectors in the training set to the input to be classified (the k

nearest neighbours) and identified using some distance metric (typically standard

Euclidian distance) and a majority vote is taken. The category most represented
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in the nearest neighbours is the predicted category for the input. The main hy-

perparameter for this algorithm is the value of k - the number of neighbours to

look for. An odd number is usually preferable, so that for binary classification

problems there will always be a winner of the majority vote.

K-Nearest Neighbours illustrates a problem that is present in many machine learn-

ing algorithms, the so-called ‘curse of dimensionality’. That is, the more dimen-

sions a dataset has, the harder it is to create effective, predictive models. This is

not just because of the extra computational burden. Higher dimensional data is

more ‘sparse’; the distances between objects gets larger. In the case of K-Nearest

Neighbours, this can be a problem because the nearest neighbours are further

away, and the distance of the nearest neighbours approaches the average distance

between data points as dimensionality increases, reducing the information content

in those neighbours.

The above supervised learning methods are established algorithms for classifying

inputs into categories using single functions. They are widely used, and have

been used with considerable success in bioinformatics problems, including the

identification of zinc and other metal binding sites (see below). However, there

are limits to the discriminatory power of a single function, linear or otherwise, and

hence limits to the complexity of the underlying system they can model. Their

‘capacity’ — the space of possible functions they can assume to model reality —

is limited.

Rather than utilising a single function, artificial neural networks (ANNs) by con-

trast use nested functions, each with its own set of parameters, to capture different

layers of abstraction in the input data. There is an input layer, which maps the

input vector to some intermediate vector which represents some aspect of the in-

put data. One or more hidden layers then acts on these intermediate vectors,

eventually passing the data to the output layer which produces a vector represent-

ing the model’s degree of certainty that the input belongs to each of the possible

categories. Each layer acts as a kind of perceptron with a non-linear activation

function — if they were all linear then the model as a whole would be linear. This

architecture is a neural network, and this is the classical implementation, with
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every layer fully connected to the layer before it. When there are multiple hidden

layers, the model is a kind of ‘deep’ learning.

Training a neural network requires finding the optimal values for the weights and

threshold for each layer. Using the usual technique of defining a cost function

and the differentiating this over the various layers would be very computationally

difficult to do with the necessary precision. Fortunately a shortcut exists called

backpropagation, which allows the neural network to be trained with much fewer

computational resources. This heuristic for efficiently calculating the gradients

of the nested functions of a neural network is in large part what underpins the

current profileration of deep learning applications.

There are variants of the artificial neural network model outlined above which are

better served for different kinds of tasks. Convolutional Neural Networks (CNNs)

are a widely used variant that are optimised for processing images and other input

spaces that can be thought of as regularly spaced grids in n dimensions. Rather

than having every layer fully connected to the layer before it, there are a num-

ber of ‘convolutional’ layers in which the perceptrons only connect corresponding

localised regions, followed by normal fully connected layers at the end. Rather

than standard matrix multiplication, a mathematical operation called convolution

is used to determine the forward flow of information through the network.

Another variant is the Recurrent Neural Network (RNN). In standard neural net-

works, the input data is unordered, and each input is treated in isolation. The

network ‘forgets’ what it has just done and treats each input like it was the first.

However often datasets have inherent order, and knowledge of what the last input

was classified as (or what the last n classifications were) contains important, us-

able information for classifying the current input. Recurrent neural networks are

usually used for sequential data therefore, and are therefore of use in dealing with

biological sequences (see below). They operate by adding an extra term relating

to previously classified inputs.

Deep Learning is a kind of representational learning — the model itself is learning

the features in the input space that are important. This can be seen when process-

ing images with CNNs — the model’s first layer may look for low-level properties

of the image, such as regions of high contrast representing borders, the next layer
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may look at simple combinations of these, and later layers will be sensitive to more

high level combinations of visual features. This is inspired by (though does not

work in precisely the same way as) the mammalian visual cortex.

2.1.3 Evaluation

A trained model will (in this case) map potential binding sites to one of two

categories — zinc binding or not zinc binding. To determine how useful a model

is, or if it still needs improving, there needs to be a measure of how well the model

is performing. There are a number of metrics for determining classification model

performance.

To evaluate the model, a number of test inputs are given to the model, and for this

purpose, the model can produce one of two outcomes, true or false, so all of the

test results fall into one of four categories: true positives (correctly identified as a

binding site), false negatives (was a binding site, but not detected), false positives

(not actually a binding site, but wrongly identified as one), and true negatives

(not a binding site, not identified as one). The first and last categories are the

ones we want to optimise for, the other two the errors.

The simplest means of grading a model is with accuracy: the total number of

correct predictions (true positives and true negatives) as a proportion of all test

inputs. This can be a misleading metric however, if the dataset is class-imbalanced

— that is, if one class is much more prevalent than the others. Accuracy is

misleading here, because a model which just always predicts the more-prevalent

class can get a very high accuracy, despite being completely useless as an identifier

of rare states.

accuracy = TP+TN

TP+FP+FN+TN

Similarly the error rate — the total number of incorrect predictions (false neg-

atives and false positives) as a proportion of all assignments — suffers from the

same problem, and should be treated with the same caution in a class-imbalanced

problem like this.
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Two more meaningful metrics are precision and recall. Precision (or Positive

Predictive Value) is the number of true positives, as a proportion of all predicted

positives; that is, how many positive predictions were correct? Recall (also referred

to as sensitivity) is the inverse, the number of true positives, as a proportion of

all actual positives; that is, how many actual positives were identified? A high

precision means that false positives are being kept down, with the reported positive

cases being mostly correct. A high recall means that false negatives are being kept

down, with most of the positive cases being identified.

precision = TP

TP+FP

recall = TP

TP+FN

However these two metrics exist in a balance, with improvements in one causing a

decline in the other. The more ‘eager’ the model is to assign a positive prediction

to an input, the more of them will be identified and the higher recall will be, but

a smaller proportion of the predicted positives will be correct, lowering precision.

Likewise, the more resistant the model is to predicting a positive label, the higher

precision will be, but the lower recall will be.

F1 = TP

TP+ 1
2
(FP+FN)

Another important metric is specificity, often contrasted with recall/sensitivity.

This is the proportion of inputs the model reports as negative which are actually

negative, and is a measure of the model’s ability to correctly ignore negatives.

Usually it is convenient to have a single value representing the effectiveness of the

model, which is done using the F1 Score. This is simply the ‘harmonic average’ of

precision and recall — the ratio of their product and sum, multiplied by two.

Another single value measure of model effectiveness is the Matthew’s Correlation

Coefficient, or MCC. This takes into account all four values in the confusion matrix,

and has certain advantages over the F1 score in that it ‘produces a high score only

if the prediction obtained good results in all of the four confusion matrix categories ’

[58].

MCC = TP ·TN−FP ·FN√
(TP+FP )·(TP+FN)·(TN+FP )·(TN+FN)
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There are metrics which show not how effective the model is in its current state, but

how its ability to distinguish one class from another varies over different thresholds.

Most classification algorithms can assign a probability of being in one class or

the other, and the actual prediction is made by setting some threshold — if the

probability is above this threshold, the positive case is predicted. If not, the

negative case is predicted. A ROC Curve will show the model’s effectiveness

changes as this threshold is changed, by plotting false positive rate against true

positive rate for every threshold value (to some given resolution). Purely random

classifiers will produce a diagonal line - as the threshold is increased, both true

positive predictions and false positive predictions will increase by equal amounts

because the model can’t actually distinguish one class from another at all. The

better the model is at making this distinction however, the more this line will curve

into the top-left corner, because true positives will increase much faster than false

positives in a ‘good’ model.

This graphical ROC curve can be represented in a single metric called the AUC

(Area Under the Curve). As the name suggests, this is the area underneath the

ROC curve, which will be 0.5 for a purely random model, and 1 for a perfect

model (see Figure 2.3). The reason a perfect model has an AUC of 1, is because

a perfect model will have some threshold which produces a true positive rate of 1

and a false positive rate of 0, meaning it will touch the top left corner of the plot.

Again this is a measure of how easy it is for the model to separate the two classes.

Another means of evaluating a model is examine how its performance increases

with increases in training set size — learning curves. In this analysis, the model is

trained in random subsets of the training data of increasing size, and the training

and test scores taken at each stage — the score used depends on what is being

assessed. This is useful in assessing the rate of convergence (how the model’s

training performance is approaching the test performance) and in determining

whether a model would benefit from more training data.

Another pair of properties of models that is important to monitor is their bias

and variance. These are both measures of the inadequacy of the model, but

represent different things. A model’s bias is the error that results from it making

incorrect assumptions about the thing being modelled — it might be too simplistic
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Figure 2.3: Area Under Curve — three different classifiers are shown here,
with the green model being little better than random allocation, the orange

model being near perfect, and the purple model being intermediate.

for example. Variance by contrast is error caused by being too sensitive to the

specific data points used to train it.

This is related to the concepts of underfitting and overfitting respectively. A

model which is underfit does not have enough parameters to properly represent

the function it is modelling, and a model that is overfit is too attuned to the

training data, which is after all only a sample. An overfit model will perform very

well on the data it was trained with, but poorly on inputs it hasn’t seen before —

it has ‘learned its training set.’ A common way to detect this is to train the model
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on a subset of the available data — typically around 80% — and then measure

the model’s performance on the remaining test set.

Any measures taken to reduce overfitting are called regularisation. These include

general best practices, such as the previously mentioned practice of evaluating a

model on a different dataset from the one used to train it, as well as algorithm

specific measures, such as (in the case of Decision Trees/Random Forests) reducing

the number of splits the tree is allowed to make.

Machine learning has been successfully applied to many areas of Bioinformatics

in recent decades, with particular successes in the last decade. It has been used

for the specific application of predicting zinc and other metal binding sites since

there was enough data to construct the initial minimal datasets in the 2000s, and

it is worth reviewing the progress that has been made here.

2.2 Machine Learning to Predict Zinc Binding

There are still many proteins whose function is unknown. In many cases we only

know their sequence, though some of these have had their structure solved exper-

imentally. One means of determining what function a protein might perform is

to look for certain properties associated with a given function in already charac-

terised proteins, and then look for these properties in uncharacterised proteins. If,

for example, it can be shown that such a protein had one or more zinc binding

sites, that could offer insights into what function the protein performs. Indeed,

that is ultimately the goal of this project.

Owing to this clear usefulness, there have been a number of attempts to develop

such predictors in the past, dating back to the early 1990s. These methods and

techniques form the essential context in which my own project should be under-

stood, and also provide the benchmark of success against which this project’s

methods should be judged. Here their progress will be reviewed. They can es-

sentially be divided into two broad categories - prediction from structure and

prediction from sequence.
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2.2.1 Prediction from Structure

Predicting zinc binding from structure takes the atom coordinates of some protein

as its input, and produces as output residues in that structure which are believed

to be able to bind zinc if zinc were present, generally along with some estimated

probability that this should be the case.

This at first seems to be of only limited utility, as very often proteins which can

bind zinc tightly will have zinc bound when the structure is solved, and so no

prediction is required. Where such methods are of use however is when a protein

capable of binding zinc is crystallised without zinc being present, presumably

because the researchers didn’t know it could bind zinc and so did not provide

any in the medium. These apoproteins can be scanned by predictors like this to

identify unfilled zinc binding sites.

The earliest attempt at a general purpose prediction algorithm was the Hydropho-

bic Contrast Function, developed in 1990 [10] to detect metal binding sites in gen-

eral. This began from the observation that metal atoms tended to be surrounded

by a shell of hydrophilic atoms, which in turn were surrounded by an outer shell

of hydrophobic atoms. They developed a function which took as its input a co-

ordinate in space, and returned a measure of this ‘hydrophobic contrast’ at that

location. They showed that by scanning every point in the structure on a grid,

evaluating the function at every point, and then ranking the points by their score

(the function returned values between -1 for inverted contrast and 1 for desired

contrast), the highest scoring points would be clustered at sites of metal binding.

This was the first demonstration that a property of metal binding sites could be

used to create a predictive model. However it should be noted that it was only

tested on structures with metals already present, not on apoproteins, and the

initial observation itself was based on a very small number of metal proteins that

were available at that time. It was later expanded upon by combining it with a

template-based searching algorithm, whereby the known metal binding sites were

represented as stripped-down ‘templates’ of just alpha and beta carbons, and used

to search proteins using a simple pattern matching algorithm [11]. Once a set of

three residues matching a known template was found, the hydrophobic contrast
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function was applied to verify that the binding site was a region of high contrast,

which it generally was. This was part of a pipeline for engineering binding sites

into proteins, so it didn’t require the matching residues to be of any particular

type, but the general principle of using known site geometry and hydrophobic

contrast properties to look in new structures was still in use.

The use of physical properties such as hydrophobicity has in some cases been taken

to the logical extreme through the use of molecular dynamics, and the full-scale

modelling of the interactions between protein residues and a hypothetical metal

atom and the use of empirical force fields which can describe the attraction that

a small molecule should experience towards a region of a protein. However, the

standard force fields developed for molecular dynamics tend not to model metal-

protein interactions well, so specific force fields for this branch of chemistry need

to be developed. One such force field, the Fold-X empirical force field, was adapted

for use on single atom ligands such as water and metal atoms [59]. Not only were

they able to ‘decorate’ protein surfaces with identified metal binding sites, but the

implied affinity of the binding sites reported by the force field correlated closely

with experimentally reported affinities where available.

Generally however, many systems for predicting zinc binding in structures use

geometric searches of some kind – particularly the early attempts. In 1997 a

database of ‘structural motifs’ was built, as well as a simple algorithm for searching

a structure for them called TESS (Template Search and Superposition Algorithm)

which used hash tables for fast lookup [60]. While not specifically targeted at

finding metal binding sites, the small structural motifs that it specialised in are

particularly applicable to small ligand binding sites.

Simple geometric templates were eventually used to specifically identify metal

binding sites again in the 2000s. Calcium binding sites have been successfully

predicted by simply looking for clusters of oxygen atoms and identifying their

centre [61] for example. In 2008, Goyal and Mande built up more complex tem-

plates using pairs of residues to identify previously unknown sites — from a now

much larger starting dataset of structures. While this attempt was a general pur-

pose metal binding site predictor, it was largely trained on zinc binding sites as

they found that all metal binding sites had broadly similar geometric distributions
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of alpha and beta carbons. This observation is important in distinguishing zinc

binding sites from other metal binding sites.

One of the first template-based techniques which looked at zinc binding sites specif-

ically was the TEMSP method, developed in 2011 [62]. Here again the problem is

simplified by creating a library of ‘residue pairs’, where for each zinc binding site

obtained from the PDB, they store each pairwise combination of liganding residues

(actually just certain properties of them, such as alpha-alpha distance etc.) and

then search the target protein for these. Once one is found, other template pairs

are superimposed on the structure to find additional liganding residues. They used

a stricter definition of ‘true positive’ than previous attempts, and still reported a

sensitivity of 86.0% and a specificity of 95.9% in their test dataset, barely lower

than the values obtained when testing on the training dataset used to refine their

parameters. When applying their tool to a dataset of proteins of unknown func-

tion, they found some very promising results, finding 186 probable zinc binding

sites. Unfortunately, the online version of this tool is no longer accessible at the

time of writing.

The use of geometric techniques to identify both zinc and other metal binding

sites has continued up until the present day, despite the increase in interest in

more complicated machine and deep learning techniques over the 2010s. In 2013 a

straightforward database survey of high quality zinc binding proteins (low resolu-

tion, high occupancy, low B-values) produced geometric templates that identified

zinc binding sites at rates comparable with other methods — though like many of

those other methods they restricted themselves to sites made of the four common

residues cysteine, histidine, aspartate and glutamate, the CHED residues [63]. The

ubiquity of these residues inspired the name of a similar tool around this called

‘CHED’, which again relied on geometric templates to predict zinc binding sites

specifically — though with an extra filtering step for removing false positives [37].

As has been noted, while much attention has been paid to predicting whether a

region of a protein binds zinc or some other metal, discriminating which metal

binds to a region of a protein known to bind a metal is less well studied, and

not straightforward owing to the similar preferences that transition metals tend

to have in terms of the geometry, distance and chemical nature of their liganding
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atoms. A geometric approach was used on this problem in 2015 with the algorithm

mFASD, which examines the atoms in contact with the metal centre to create a

‘functional atom set’, creates a library of known functional atom sets for particular

metals, and determines the set’s ‘distance’ (not Euclidian distance, but rather a

measure of the difference between two data structures) from each characteristic set

— the functional atom set distance (FASD) [64]. Using just this information they

were able to get AUC scores ranging from 90% and 50% (i.e. random), depending

on the metal pair in question, and demonstrated the feasibility of distinguishing

the binding sites of different metals. The lowest scoring pair was manganese and

iron, at 50.6%, which had previously been shown to have similar cooridnation

preferences and tend to have weak binding affinities for their binding sites [65]

The most recent purely geometric approach to predicting metal binding is from

2019, which uses known metal geometry rules rather than a survey of known

protein structures particularly [66]. Their method, called GaudiMM, is notable in

that after making the side chains in the test set ‘flexible’, their success rate only

slightly decreased — an important property of any system that proposes to find

metal binding sites in apoprotein structures.

The research outlined above did not use machine learning techniques, but rather

simple geometric templates and other rules based on observed properties of zinc

and other metal binding sites in proteins. What distinguishes them from those

which do use machine learning is not the use of geometry as such — geometric

attributes are often part of the featureset fed to machine learning algorithms — but

rather the use of a human to determine what features to pay attention to. Machine

learning algorithms by contrast, while they vary widely in implementation details,

are generally left to determine by themselves what features are important and how

to use the data given to them to classify objects.

MetSite was one of the earliest uses of machine learning techniques to predict

binding sites as we would use the term today, in 2004 [67]. They used artificial

neural networks to detect metal binding sites in low-resolution structural models,

such as those generated computationally from sequence data. They set themselves

a target of having a false positive rate no higher than 5%, and using this threshold

were able to get an accuracy of 94.2% and, more informatively, a recall of 60%,
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across all sites. These figures fall to 84% and 39% for specific metals, from which

they infer that many metals in the structures used are labelled incorrectly. They

show that their model can predict metal binding in proteins of unknown function,

and in models generated computationally, because the features they use do not use

information from the precise positions of liganding atoms, but from outer residues

and secondary structure.

An important development in 2008 showed that decision trees and support vector

machines could be used to identify metal binding sites in apo-protein structures.

This was an important proof-of-concept as it demonstrated that in the absence of

the metal atom, the liganding residues are still sufficiently close to their liganding

conformation to allow them to be identified from atom positions. A similar study in

the same year showed that Bayesian classifiers (models which use training dataset

to progressively apply Bayes’ rule of probabilistic inference) alone could identify

zinc binding sites specifically, using only concentric shells of atoms around the site

as features [68]. This latter paper makes the point that Bayesian classifiers have a

distinct advantage over more complex machine learning methods in that the model

is less of a black box — you can follow the decision making of the classifier more

easily.

Another use of Random Forest from that same year also produced reasonably

encouraging results — an AUC of 0.8 [69]. Random Forests are particularly suited

to measuring the importance of the features that are given to the model, and

in this case they found that accessible surface area and the level of evolutionary

conservation of the residues in question were particularly important properties

to examine. This was also another example of a model whose efficacy remained

largely the same when apo-structures were examined. This finding was repeated

in a similar piece of research in 2012 [70].

There have been uses of deep learning in recent years however, with encouraging

results. In 2019 a system in which an ensemble of different classifiers were used as

the inputs to a neural network was developed quite successfully — demonstrating

the power of using multiple classifiers trained in different ways [71].

There has also been some attention given to the problem of detecting half binding

sites — regions of a protein chain’s surface which would form part of a binding site
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if another half binding site is present. In 2011 the mutation in the complement

factor H protein which causes them aggregate was investigated by a number of

experimental means, as well as with a bioinformatics approach [72]. Here the

approach was largely one of molecular modelling, creating multiple dimers of the

protein in various conformations and looking for arrangements in which there was

no steric clash and in which an arrangement of residues is made which could bind

zinc (they used METSITE for this). While they didn’t find a definitive zinc binding

site in this way, they did rule out a site which they had strongly suspected of being

responsible beforehand. Note also that this is a search for a full zinc binding site

between two specific proteins — it is not a search for a half binding site on one

protein. That is, it relied on knowing what the other ‘half’ of the binding site

would be, at least at the whole protein level.

There have also been some purely experimental investigations into this phenomenon,

such as the demonstration that zinc mediates the oligomerisation of the Alzheimer’s

Amyloid Precursor Protein, shown through FRET analysis [73]. In general how-

ever, the examination of finding half binding sites in protein structures has been

very understudied.

2.2.2 Prediction from Sequence

A system for identifying zinc binding residues merely from the sequence of residues

it contains is arguably much more useful, as protein sequences are much more

readily available. It allows for whole genomes to be scanned for zinc binding

proteins. As such, there has been much effort in the past to create techniques for

predicting zinc binding from sequence.

The earliest research in this area was largely a ‘manual’ effort, given the small

number of sequences available. The discovery of zinc finger proteins in 1985, for

example, involved the observation of repeating C...C...H...H patterns in the pro-

teins being studied, and the hypothesis that these were binding zinc [14]. Similarly,

zinc binding in the E6 and E7 subunits of a Papillomavirus was predicted from

the observation of cysteine repeats [74]. Slightly more complex patterns were later

identified, such as the observation that enzymatic zinc binding sites frequently
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have two residues close to each other in the sequence, and then a third much more

distant — the ‘short and long spacers‘ [12]. This kind of manual examination

of individual protein sequences is obviously not scalable to the vast numbers of

protein sequences now available, and can only identify relatively obvious binding

sites in any case — but the same principles that were used in these early studies

of characteristic repeats largely underpins the automated techniques now in use.

As the number of sequences grew, identifying zinc binding sites through the use

of sequence alignment to known zinc binding sequences became possible. This

was used to identify plausible sites in Protein Kinase C [75], in Giardia lamblia

surface proteins [76], and in the Alzheimer’s Amyloid Precursor Protein (APP)

[77]. While this sort of manual inspection for characteristic sequences would largely

by superceded by more automated methods from the mid 1990s onwards, it is still

occasionally a useful feature of research when a single protein is being researched

in detail — being done recently to identify a novel zinc binding protein in yeast

from an observed CXXCXXXXXCXXC pattern [78].

One of the ultimate advantages of prediction from sequence over prediction from

structure is that it allows you to quickly and efficiently search very large datasets

for evidence of zinc binding. Again, early efforts relied on sequence alignment

— in 2004 every then-known metal binding sequence was encoded as a series of

residue codes and gap sizes (referred to as ‘metal binding patterns’), and these

were then BLAST searched against entire genomes of various species [79]. The

same team went on to study zinc binding in the human genome specifically using a

refined version of this technique and assert, based on this method, that the human

genome encodes 2,800 +/- 400 zinc binding proteins — about 10% of the believed

protein encoding genes at the time[1]. Shortly afterwards they expanded their

analysis to representative genomes from eukaryotes, prokaryotes and archaea, and

found that this proportion varies from 4% to 10% — with eukaryotes having more

due to higher numbers of regulatory proteins [80].

Largely however, as with prediction from structure, the bulk of research efforts

have focused on the use of machine learning methods. One of the first uses of

traditional machine learning methods was in 1995, when neural networks were

employed to predict zinc finger proteins from sequence data [81]. They hardcoded
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the specific C...C...H...H spacer pattern they were looking for into the model,

rather than having the model learn it from existing sequence data by encoding it as

a binary feature, and also incorporated features for electric charge, hydrophobicity,

and side chain types. Overall this was largely successful; they reported an accuracy

of 97%, though for a very specific type of zinc binding sequence that was largely

hardcoded in from the start. Another early use of neural networks to predict metal

binding using neural networks was in 2005, when a one-hidden-layer network was

used to predict a variety of metal binding sites in sequence [82]. Though they

did not look at zinc specifically, it, like the previous example, demonstrates that

it is possible to build effective models — with high sensitivity in this case —

from comparatively small amounts of data (at least compared with the volume of

sequences available now).

Both SVM and neural networks were used to predict the metal binding cysteine

and histidine residues of sequences by the same group that developed the metal

binding pattern concept — though it relies on the sites present in the searched

sequence belonging to previously identified motifs, as it is these previously iden-

tified patterns that their models were trained with [83]. They would later extend

this to use inter-cysteine distance information [80].

Another use of SVM models from the same year reported a sensitivity of 74.9%

and a specificity of 98% for zinc, using a variety of features, and found that of all

the features they looked at, hydrophobicity, solvent accessability and polarity were

the most important features used by the model in prediciting zinc binding from

sequence [84]. The combination of raw sequence data with homology modelling was

validated using another SVM model in 2008, in a tool called ZincPred [85]. They

reported high scores, but it should be noted that they had a relatively forgiving

metric of success (at least one residue in a binding site correctly identified) and,

like many sequence based models, it only predicts at the residue level — that is,

the inputs are individual residues, and the model predicts whether that one residue

is metal/zinc binding or not, rather than identifying discrete binding sites. SVM

models were widely used throughout the 2010s, most recently in 2018 [86], with

broadly similar results.
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Random Forest has also been used successfully in the prediction of zinc binding

sites from sequence, again relying heavily on Position-Specific Scoring Matrices

[70], [87] — an advantage of which is the relatively straightforward means of

determining which features are the most important in making correct predictions.

In keeping with the structural models, the use of ensemble methods — where

multiple models are trained and then vote — has also been used, in the case of

sequences for a model called ZincExplorer [88]. An interesting example of this

was in 2017, when three previous zinc binding site predictors — ZincExplorer,

ZincFinder, and ZincPred — were used to predict zinc binding from sequence, and

then the output of these individual models were fed into a novel linear regression

model, yielding very high results [89].

In the past couple of years the use of deep learning techniques has begun to have

a more pronounced effect on the field. In 2019 an alternative to molecular docking

— where the binding affinity of a ligand and protein is calculated by simulating

the correct pose/position of the ligand on the protein, and then calculating the

energy of binding from that position — was proposed called DeepAffinity [90].

This uses mostly recurrent neural networks to remove the need for these separate

steps, and simply predicts affinity as a function of the structure alone.

Other uses of deep learning to predict metal binding from sequences include com-

bining convolutional and recurrent neural networks to predict metal binding his-

tidines and cysteines (which found the mutation rate feature to be most signifi-

cant) [91], a novel means of representing protein sequence using continuous vectors,

which they apply among other things to the task of metal binding site prediction

[92], and a use of a technique called ‘extreme gradient boosting’, which predicts

ligand binding sites generally at a similar success rate as previous techniques, but

faster [93]. This is a modification of the gradient boosting algorithm, which has

also been used to predict metal binding residues from sequence, albeit largely

relying on structural attributes predicted from the sequence [94].

Machine learning has therefore been used successfully in the prediction of metal

binding sites generally and zinc binding sites specifically. One recurring feature

that should be pointed out in closing, particularly in the sequence-based predictive

models, is the focus on zinc binding residues rather than zinc binding sites. In most
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cases, the entity examined by the predictive model is the individual residue, often

with a surrounding linear sequence ‘window’ of residues. The model then assigns

a probability as to whether that residue is a zinc binding residue. As outlined

above, this approach has had a measure of success, but it is a somewhat artificial

concept. There is, after all, no such thing as a zinc-binding residue in isolation.

The individual residues of a high-affinity zinc binding site of the kind considered

here are only zinc-binding when the other residues are present, and conversely

many non-zinc-binding residues could bind zinc if other residues were present in

the correct locations. It is particular combinations of residues, not individual

residues, which are zinc binding — an important fact not usually considered in

research of this kind.

Another commonality is the treatment of zinc binding sites as a single category,

and the presumption of properties that are common to them all regardless of the

residues of which they are comprised. This may well be sufficient — particularly

as there are essentially only four residues that make up the vast majority of zinc

binding sites — but it is possible that properties used for prediction have much

tighter distributions within particular sub-categorisations of zinc binding sites.

These are both crucial issues, which this PhD addresses.

2.3 Sequence Techniques

As part of the dataset generation process, sequence clustering is used. This takes

a set of sequences (polypeptide sequences in this case)and creates a non-redundant

set from them where very similar sequences are grouped together, with a similarity

cutoff use to determine which sequences should be considered similar enough to

group. This has the advantage of ensuring that sequences which are overrepre-

sented are not given undue weighting in analysis simply because they are present

in more copies. The program CD-HIT is used to perform this analysis [95].

BLAST (Basic Local Alignment Search Tool) searching is also used in this project,

which is an algorithm for searching through a database of protein (in this case)

sequences for those which align to a query sequence. It uses heuristics to perform
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this search very quickly. It is ‘local’ alignment in the sense that the query is not

just aligned to the whole target sequence — if it has a better alignment with a

substring of the sequence, that will also be identified, and also uses substrings of

the query sequence [96].

2.4 Web Technologies

A major part of this project’s utility to the wider scientific community is the

presentation of the data and tools created for it to the world. All of them are

available via the web, and various web technologies are used to accomplish this.

2.4.1 Django

Django is an open source Python web framework, used to create database-backed

web applications [97]. All database population scripts are written in Python, and

use the Django Object-Relational Mapping utilities to populate the database.

2.4.2 GraphQL

GraphQL is an API technology and query language which allows users to construct

requests for precisely the data they need [98].

Traditionally, web APIs have used the REST architecture, whereby every mean-

ingful object is given a URL address. The problem with REST that GraphQL

seeks to address is that REST APIs often involve overfetching (you get the full

representation of an object whether you want it or not) and underfetching (you

have to make multiple requests to get the data you need). With GraphQL APIs,

you define your objects using a graph of relationships, and then request exactly

the data you need.

GraphQL APIs are used here to provide computational access to both the dataset

itself, and to the predictive models.
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The Python/Django library graphene is used here to implement the GraphQL

schemas and API services [99].

2.4.3 React

While the web services that provide computational access are useful for program-

matic access, for browsing the data initially a website frontend is much more useful.

In order to avoid duplication of logic, a Javascript framework which connects to

the existing API is used here: React.

React uses individual components to build up a single page web application, and

the React router package is used to create individually addressed pages.

Other JavaScript technologies used on the frontend are the 3D macromolecular

visualisation package NGL (used for visualising the zinc binding sites) [100] and

the charting library Highcharts (used to give an overview of the data).

2.5 Conclusion

Predicting zinc binding sites is a binary classification task — all potential sites

in a protein, whether that is defined as a location in space or a combination of

residues, must be assigned to the category of ‘true zinc binding site’ or ‘non zinc

binding site’, using information about what distinguishes these categories from a

dataset of confirmed zinc binding sites.

This is a task for which there are a variety of well established machine learning

techniques applicable, the basic theory, advantages, and scope for customisation of

which have been outlined here. There is a history of such techniques being applied

to the problem, the results of which have which have also been reviewed here —

though few if any are open source and/or still publicly available over the web as

they were at the (often quite recent) time of their initial publication.

These are the computational techniques which will be used to build the predictive

models. To make these models available to researchers, a variety of modern web
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technologies are used. Before any predictive models can be utilised however, the

dataset which will ultimately form the training data must be built.



Chapter 3

atomium — The Python

Structure Parser

Note that some of the material in this chapter has been published in the journal

Bioinformatics under the title ‘atomium—a Python structure parser’ (2020) pp.

2750–2754. [101]

Much of this project relies very heavily on reading in structure data from files

deposited in the Protein Data Bank.

Traditionally these files have been stored and distributed in the form of PDB (.pdb

or .ent) files. These are text files that consist of a list of records, with each record

being limited to 80 characters. Information is stored in these records at fixed

offsets from the start of the line. This file format has a number of limitations,

most notably the fact that they cannot store more than 100,000 atoms because

only five characters are allocated to atom IDs, and so they cannot go past 99,999.

Consequently, the Protein Data Bank also provides files in the newer mmCIF (.cif)

file format [102], and indeed, structures with more than 100,000 atoms are only

available in this file format.

There are a number of parsers available that can handle these file formats, and

which were considered for use in this project, both in Python and other languages.

However, for reasons that will be outlined shortly, it was decided to create a novel

Python parser. This parser is called atomium.

50
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3.1 Rationale

The tool used to read structure files is of such critical importance to this project,

that it was important to ensure that the correct tool with the correct capabilities

was used. Specifically, the tool would need the following properties:

• The ability to read .cif files. Some structures are only available in this form

as they contain too many atoms to fit in a single .pdb file, so .pdb parsing

alone would lead to an incomplete (though still very large) coverage of the

available structures.

• The ability to generate biological assemblies from the raw, asymmetric unit

coordinates of the file. As will be outlined below, the structure actually de-

scribed by these files is often not entirely representative of biological reality,

and certain transformations must be performed before analysis can be done.

• The ability to extract certain items of descriptive data from the files. In

addition to the actual coordinates of the structures’ atoms, the files also

contain ‘meta’ information about the file, details of the experiment that

produced them and the species the molecules came from, quality information

such as resolution, and sequence information not obtainable from the model

itself (which often contain missing residues). This information was needed

to annotate a local database.

Probably the major Python PDB parser at time of writing is BioPython. This is a

multi-purpose bioinformatics library, with many modules for dealing with general

biological data formats. One of these modules allows for parsing of PDB structure

files, and is frequently used in Python analyses of protein structures. However,

BioPython’s PDB reader does not support the processing of Biological Assemblies

— it can only give the user the asymmetric unit as a model. As this project relies

on having that functionality as a core part of the parsing process, this makes using

BioPython difficult. It does meet the other requirements in that it can parse .cif

files and read the metadata, but biological assembly generation is too crucial for

the library to be considered.
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It was therefore decided to create a novel Python library for handling biological

structures, which would focus solely on structural models (BioPython has many

other disparate functions). An additional advantage to doing this was that it gave

a much greater insight into the structure of these files, and of structural biology

concepts generally.

3.2 Data Structures

The object returned by the various parsing functions is a File object. This essen-

tially represents the actual file object itself rather than its structural contents, and

has the ‘metadata’, descriptive attributes referred to above. Some key attributes

are:

• code The PDB identifier of the structure.

• title An overall description of the structure.

• technique The experimental procedure used to generate the data, such as

X-Ray Diffraction, NMR, etc.

• source organism The organism that the molecules were originally derived

from. Note that in cases where the file lists multiple species, only the first

is used.

• expression system The organism that the molecules were actually expressed

in. Again just the first is assigned to this property if there are multiple.

• resolution A measure of structure quality.

There are many others, and the full documentation (https://atomium.bio) lists

them all.

The two most crucial attributes of the root File object are model and models.

A File object has one or more Model objects, representing the actual structures

themselves, and these are accessible via models. Because most files just contain a

single model, the model attribute points to the first Model object as a convenience.

https://atomium.bio
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The must fundamental structural object is the Atom. All structures are ultimately

amalgamations of atom objects arranged in space, and all higher structures are

just collections of atoms. An Atom object has attributes for its Cartesian coordi-

nates, its element, its unique numeric ID, its name, and various other pieces of

information extractable from PDB structures. Even before they are grouped into

structures, Atom objects can do various feats based on these simple properties. The

mass of an atom can be determined from its element, its distance to or angle with

some other atom can be determined using their locations, they can be translated

and transformed through space, etc. All of these are performable using methods

of the Atom object.

Ultimately though, structures are not modeled as mere clouds of atoms, they are

grouped into various molecules and other higher order structures. In atomium,

the two objects which are direct containers of atoms are Residue and Ligand; the

former is used when the structure of which they are part is part of a chain, and

the latter when it is not. They both have properties for their ID and name, and

residues additionally have methods pointing to the next and previous residue in

the chain they are part of.

They also both have an attribute which points to their atoms, but these are not

stored using a Python built-in object type such as list or set. Instead they are

stored in an atomium-specific object called a StructureSet, which is optimised for

storing atomium structure objects. In many respects this works in a very similar

way to an actual set, but internally the objects are stored as a Python dictionary,

where the IDs are keys, and the values are lists of objects with that ID. This makes

lookup by ID much faster than it would otherwise be which is absolutely crucial

in large structures.

Residues themselves are stored in Chain objects. This implements the Python

iterable tools, so they have a length, allow access to residues by index, and can be

iterated through in for loops. They store their residues in a StructureSet, but

they are returned as an ordered tuple.

Both Chain and Ligand inherit from the class Molecule, which in atomium means

they are ‘top-level’ structures as far as a model is concerned. That is, a model is a

collection of chains and ligands. In fact a Model object is initialised by passing in
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chains and ligands, with the ligands then being divided into water and non-water

ligands, as this is often an important distinction.

The relationship of the classes is outlined in Figure 3.1.

Models, chains, residues and ligands all inherit from the class AtomStructure.

This is an abstract base class that any atom-containing class can inherit from,

and provides many useful functionalities using those atoms. It allows a structure’s

mass or charge to be determined by summing the masses or charges of the atoms,

allows for translation or rotation of whole structures, the generation of atomic

formulae using Python Counter objects, and RMSD (Root Mean Square Deviation

— a measure of how different two structures are in the layout and location of their

atoms) comparisons with other structures. The full functionality is described in

the atomium documentation.

The structure classes also make use of an atomiummetaclass called StructureClass.

Essentially this confers on any object created from these classes, a set of lookup

methods, allowing them to search the structures in their StructureSets by any

property they might have, or any derivative of those properties. For example,

chains can return any residues whose name matches a particular regex pattern,

and models can return any atoms with a mass greater than some threshold. Ear-

lier versions of atomuium had these properties manually coded in, but the cur-

rent metaclass-based implementation ensures that all properties, all derivatives of

properties, and any future properties can be instantly and rapidly searched (see

Table table:filtering.

These search functionalities all come in both single result (where a single structure

or None is returned) and multiple result (where a set of results is returned, even

if empty) versions.

Finally, all structures have an awareness of their context. That is to say, all atoms

know which residue or ligand they are in, which model they are in, and so on, as

do higher structures. This allows for neighbour searching. For example, atoms

and higher structures can both look for atoms within a certain cutoff and which

match certain criteria — useful in, for example, a project that relies on identifying

binding sites.
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Figure 3.1: The relationship of structure classes in atomium, representing
the hierarchy of types. While the structures can be created from scratch, this
hierarchy has been designed to reflect the hierarchy of object types in PDB and

mmCIF files.

Command Result
model.atoms() All atoms
model.atoms(element=‘N’) All nitrogen atoms
model.atoms(mass gt=14) Atoms with mass greater than 14
model.atoms(name regex=‘CA|CB’) CA and CB atoms
model.atoms(het name regex=‘CYS|HIS’) Atoms in cysteine and histidine residues
model.atoms(chain length lt=100) Atoms in chains shorter than 100 residues

Table 3.1: Examples of the filtering syntax that all atomium structures have
by virtue of implementing the StructureClass metaclass.
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3.2.1 Distance Optimisation

While atomium is a general purpose PDB parser, some of its features are of partic-

ular significance to this project. An example of this is that of proximity detection,

which allows atoms to identify nearby atoms within a cutoff. Higher structures

can find nearby higher structures, but ultimately all of this is still relying on atoms

searching for nearby atoms. As alluded to earlier, this is of particular importance

in this project as a zinc atom’s liganding atoms are determined by distance (and

element). Any optimisation that can be done to this process is therefore important.

This process particularly needed optimisation as it is such a significant bottleneck

in the generation of the dataset. To identify neartby atoms, an atom gets the full

set of atoms in the containing model and iterates through them all, calculating

the distance between that atom and itself. Those that fall below the given cutoff

are returned. The algorithm which calculates distance is not particularly complex

(it is just the Pythagorean equation extended to three dimensions) but when it

is performed many times the burden can become considerable as the number of

atom distances to calculate inreases with the square of the number of atoms in

the structure for every proximity search. In large models with many thousands of

atoms, finding an atom’s nearby atoms means getting its distance to thousands of

other atoms. For each metal atom in a structure, the metal’s nearby atoms must

be found, and for each binding site, each atom in each liganding residue must

also find its nearby atoms to determine stabilising contacts in the secondary shell.

Large structures also tend to have many binding sites, meaning that some PDBs

would take more than a day to fully process.

To resolve this problem, atomium has been given the ability to speed up this

process at the expense of greater memory consumption. An atomium model has

an optimise distances method which, when called, organises the atoms into a

grid. This is implemented using the Python defaultdict data structure, which is

a mapping that creates a key if a new key is used, rather than throwing an error.

These are nested three-deep so that each of the three dimensions is represented,

and all the atoms in a single 10Å cube are stored in one container. Once this

grid is created, whenever at atom needs to search its neighbours, it uses its own

location to work out which entries in the grid to look up using its own coordinates
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as keys, and then only searches these. The number of adjacent grid compartments

to search is determined by the cutoff being used in the proximity search.

This optimisation can reduce the time taken to process a large PDB by three

orders of magnitude.

3.3 Parsing

atomium can read .cif, .mmtf (a compact, stripped-down, binary representation of

mmCIF files optimised for transmission over the web), or .pdb files. In each case

the overall process is the same.

1. Get the file contents as a string.

2. Determine which filetype it is by looking at the file extension or, if not

possible, by looking at file contents.

3. Convert the filestring to a Python dictionary whose structure is specific to

that file type.

4. Convert that dictionary to a standard atomium data dictionary, whose struc-

ture is the same regardless of the file type origin.

5. Convert that data dictionary to an atomium File object with one or more

Files within it.

This process for parsing has a number of advantages over just trying to go from

filestring to processed Python object in one step. By making the parse process

of the three filetypes converge at one data structure — the atomium data dictio-

nary — it prevents duplication of effort involved in going from ‘data’ to ‘Python

structure’. It also means that every file can have a consistent, dictionary repre-

sentations, which means that they can all be represented as JSON if desired. It

is also easier for testing, as each stage in this (relatively complex) parsing process

can more easily be tested in isolation.
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3.3.1 File Contents and File Type Detection

Getting the file contents as a string is a straightforward process: it is simply

opened and read using the built in Python functions for that purpose. The process

is abstracted into a single function which will first try to read the file as a unicode

string (appropriate for .cif and .pdb) and then as binary data (appropriate for

.mmtf).

atomium also enables ‘fetching’ a file from a remote server. Generally this is via

HTTP, from the RCSB web servers [57] with a four letter code, though the user can

select any URL. The Python library requests [103] is used for this. Alternatively

the user can fetch a file over SSH using a different atomium function.

Once the file contents are extracted as a string (or bytestring), atomium then de-

termines which of the three file types it has been given, so it knows which functions

to use to process it further. This is done using a straightforward algorithm: if the

file extension is given, this will be used to determine filetype. If not, or if the file-

type is not one of the three it recognises (such as .ent for example), atomium will

assume it is .mmtf if the data is binary, .cif if it is a unicode string that contains

the string atom sites, and .pdb otherwise.

The parsing time for the three file formats in atomium are of a similar order of

magnitude, with .cif taking the longest (see Figure 3.2). In all five cases, the

relationship between the number of atoms and the time taken to parse is linear

and, for all comparisons, care was taken to ensure the same kinds of parsing were

being done—no biological assembly generation, proper relationship parsing and

assigning for the sub-structures, etc.

3.3.2 File Dictionaries

The next step is to convert this string into a Python dictionary that reflects the

internal structure of that file type.

.cif files are essentially a list of connected tables: tables in the sense that each

block has a list of headers, and then one or more lists of values that belong to
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Figure 3.2: Time taken to parse the same 1000 randomly chosen single-model
structures in the three file formats using atomium. Time as a function of atom
count is linear and it can be seen that mmCIF structures take the longest,

followed by PDB structures and MMTF structures.

those headers, and connected in the sense that a row may have an ID as its first

value which is refered to in another table. atomium represents these tables as lists

of dictionaries, where the headers are keys, and the row cells the values. Each of

these table lists is a value in the top-level dictionary. The main bottleneck in this

process is splitting values on a single line — they are white-space separated, albeit

with whitepsace within quotes ignored, and with both quote types permissable

and escapable within the other. Initially the Python library shlex was used to do

this splitting, but its speed was just too slow so a custom function was written

which was faster, though still the slowest part of the process.

.mmtf files are binary encoded Python dictionaries, so once the Python msgpack

library has decoded it, it is essentially already in dictionary form. The only extra

steps that need to be taken are to decode the .mmtf formatted binary fields within

this dictionary, using the algorithms specified in the .mmtf documentation and

implemented in atomium.
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.pdb files have much less internal structure than the other two, and are essentially

just lists of records. These records can be grouped by record name however, and

this is what atomium does. The file dictionary has record names as keys, and

lists of records that belong to that record type as values. The only exceptions

are REMARK records, which are further grouped by remark number, and all model

related records (ATOM, TER, HETATM etc.), which are grouped together because their

order relative to each other is information that would be lost of they were split up

into record types (TER records separating chains being the main reason).

This resultant file dictionary, whose internal structure is specific to file type, is

essentially just a Python representation of the file contents — no ‘parsing’ is done

as such, it just gets the information in a form that later processes can understand.

3.3.3 Data Dictionary

This file dictionary is then turned into an atomium ‘data dictionary’. This is a

dictionary with a consistent internal structure regardless of what the original file

type was, and essentially consists of a number of sub-dictionaries.

For example there is the description sub-dictionary, which contains meta infor-

mation about the file such as title and deposition date. There is an experiment

sub-dictionary, with information about how the model was created. The quality

sub-dictionary contains resolution and other related information. The geometry

sub-dictionary contains transformation matrices, such as those needed to create

biological assemblies.

The most important one is ‘models’, which is actually a list of sub-dictionaries.

Each one contains informations about the chains, ligands and water molecules in

that model, containing all the information needed to create an atomium Model.

Each of the three file dictionaries have their own functions for extracting infor-

mation from them and building a data dictionary. In the case of .cif and .mmtf

file dictionaries, this is relatively straightforward, as much of the data has already

been extracted in the previous step, and this is largely just a question of trans-

fering data from one dictionary to another, and nesting atoms within the right

structures.
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For .pdb files however, the previous step just grouped records, and the data is

still locked away within these strings at pre-defined offsets, so for this filetype it

is this stage which is the bottleneck, as it takes longer to extract the necessary

information.

The parsing process is summarised in Figure 3.3.

3.3.4 Model Generation

The structure of the data dictionary is optimised to make model creation as rapid

as possible. The polymers, ligands and water molecules are already segregated as

they will be in the model, and all names and IDs are already parsed. Relevant

Model, Chain, Ligand etc. molecules are created from this information.

The surrounding File object is made from the rest of the data dictionary with

the meta information, with the values of the sub-dictionaries becoming properties

of that object. The Model objects exist as a list within that File, with a pointer

to the first Model if the user only needs the first.

Biological assemblies can be created using a generate assembly fuction. In earlier

versions of atomium, each individual molecule was transformed separately, but in

very large structures this can be time consuming. Instead, the copies are created,

and then the atoms of all the structures are transformed in one step.

3.4 Saving

One of the more unusual features of atomium is that it allows changes to models

to be made and then for those changes to be saved in any of the three file types

that atomium supports.

Unlike the process of parsing, in which the structures pass through a number

of different representations reflecting the different layers of abstraction of that

process, saving is much more starightforward. A function takes in an atomium

AtomStructure (it does not need to be a model — chains etc. can be saved

individually) and turns it into the relevant filestring.
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Figure 3.3: An overview of how parsing of the three file types is done. Because
the three file types converge on a single data dictionary, all three file types can

be represented as JSON.

Only structural information is saved. The various file annotations that are parsed

from the original files are presumed to be properties solely of those original files,

and not of any modified versions of them that might exist. So, atom records are

saved, along with anything else needed to construct details of the actual structure

model, but not titles, deposition dates, resolution etc.

3.5 pdb2json

As already noted, the process of parsing a structure file involves turning the raw

filestring (or bytestring) into two successive Python dictionaries, before then being

turned into a Python object. Initially this choice of Python dictionary as internal

representation was a decision made to make development easier.

However, Python dictionaries have a structure very similar to JSON, a data format

that is frequently used for sending data over the web in a very human readable

way, as it is essentially just nested key-value pairs. Therefore, atomium is also
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potentially a tool for turning any PDB structure into JSON, if the data dictionary

were simply converted to JSON using Python’s built-in json library.

To this end, pdb2json was created. This is a simple, lightweight Django web app

which uses atomium to take any PDB code and return the resultant structure as

JSON. This is done using a URL - /2SOD/ will return the JSON for the PDB

2SOD, for example.

It is currently available at https://pdb2json.samireland.com/.

By default, pdb2json tells atomium to use the .cif representation for parsing, but

this can be altered using, for example, /2SOD.pdb/. The structure of the JSON

returned will be the same, as atomium creates the same data dictionary regardless

of file type, but some values might be different. For example, many PDBs have

titles etc. in ALL CAPS whereas .cif files use title case, and atom IDs may be

numbered slightly different. Generally the actual semantic content should be the

same across all file types though.

If the user so wishes, they can get the initial Python dictionary as JSON (the one

that is specific to that file type) using /2SOD/?file notation. This is generally

of limited interest in the case of .pdb and .mmtf, except as a means of checking

the original file contents pre-processing, but in the case of .cif it can be very

useful. This is because every attribute of the structure will be accessible in this

dictionary, so if the subset of attributes atomium pulls out of files to annotate its

final representation isn’t enough, they can be obtained from this representation.

For example, atomium File objects have rvalue and rwork attributes, but there

are many supporting metrics for these calculations in the original file.

Obviously, PDB structures can be quite large, with some containing hundreds

of thousands of atoms. The user may not wish to download the JSON for an

entire structure when they only need a single metric or set of metrics. Therefore,

pdb2json allows the user to traverse the keys of the JSON structure using the

supplied URL. For example, while /2SOD/ will return the JSON for the entire

structure, /2SOD/quality/ will return only the quality sub-dictionary that was

part of the original JSON object. This traversal can be as deep as the user wishes:
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/2SOD/models/0/non-polymer/O.153/atoms/4382 will return information about

a single zinc atom, for example.

Note however that while this will reduce the volume of data that will be sent

over the network, on the server the structure is still being fully processed. So this

feature can save on bandwidth, but not really on request speed.

pdb2json then, is a lightweight web server for providing users with JSON represen-

tations of any PDB structure, acting as a thin wrapper around atomium. It was

not necessary to the overall project or even to atomium itself, but it was felt the

ratio of work needed to benefit provided to the wider community was so low that

it would be a useful exercise to create. It means that researchers no longer require

a PDB parser installed to get basic structural information — just an HTTP client,

such as a browser. It is language agnostic; most programming languages will have

JSON libraries as part of their standard library, whereas PDB processing libraries

like atomium or BioPython are much more specialised pieces of software. It also

means that all structures now have a much more human readable format that is

easily viewable.



Chapter 4

ZincBind — The Database of

Zinc Binding Sites

Note that some of the material in this chapter has been published in the journal

Database under the title ‘ZincBind—the database of zinc binding sites’ (2019)

[104], though the values and analysis have been updated for the updated dataset.

This PhD focuses on developing novel means of predicting Zinc Binding Sites

using the known properties of previously identified Zinc Binding Sites. As such,

the initial step was to create a dataset of these already-known sites.

This is an undertaking that has been performed previously on a smaller scale,

several times (see Chapter 1). One of the primary reasons that the effort has been

duplicated so many times is because in none of the previous dataset generations

did the authors make their data publicly available in an easy-to-use resource.

Therefore from the very beginning of this project, the intention was always to

not just create this dataset of Zinc Binding Sites, but also to make this database

publicly available via a web resource, that would be continually updated with new

sites as they become available.

This chapter will describe the creation of that dataset, and the web application

that offers users access to the data: ZincBind.

65
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4.1 Data Generation

ZincBind uses as its primary data source the Protein Databank [17]. This contains

almost two hundred thousand protein structures, a subset of which contain zinc

atoms and which can be inspected to see if a zinc binding site can be identified.

The RCSB web services [57] allow a user to query the entire databank by, among

other things, the chemical formulae of its small molecules. The PDB IDs of all

zinc atom containing structures can therefore be obtained by issuing a request to

these web services for a ChemCompFormulaQuery with the formula Zn.

If the dataset is being created from scratch, each of these PDB IDs is iterated

through in turn to look for zinc binding sites. If the dataset is merely being

updated with new structures, only those IDs that do not already exist in the

database are used.

4.1.1 Structure Inspection

The algorithm iterates through each PDB code and, for each, determines what zinc

binding sites are present, if any, and saves the relevant objects to the database

once its analysis is complete.

Each PDB ID is analysed within a single database transaction, meaning that the

SQL statements are built up by Django throughout the analysis and then executed

all at once at the end of each PDB ID analysis. This has two benefits. Firstly, it

makes the whole process much faster — there are database records for each atom in

the binding site, so opening up database connections, creating a record, and closing

the connection multiple times per structure is much more time consuming than

just doing that once at the end. Secondly, and more importantly, if the program

is interrupted in the middle of building a database, it will essentially rollback to

the last fully processed PDB, rather than saving records for half-processed PDBs

which could cause errors when the program is restarted.
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The structures are requested from the RCSB web servers in the mmCIF file format.

This, and all subsequent structure parsing and analysis, are abstracted into the

atomium Python library (see Chapter 3).

The first processing step with the obtained and parsed structure, is to generate

a biological assembly. The raw coordinates of the PDB structure contain the

‘asymmetric unit’, which is often a subset or superset of the ‘true’ biological as-

sembly. Each PDB structure contains a list of possible biological assemblies that

can be created from the chains in the asymmetric unit to make a more biologically

realistic structure (see Chapter 1), and each is associated with a list of transfor-

mation matrices and calculated metrics. The ∆G of the assemblies are used to

rank them, and the lowest ∆G assembly that still contains zinc is selected as the

‘real’ biological assembly.

This step is critical. While asymmetric units are perfectly suitable if you are

merely concerned with intra-chain features, they are often unsuitable for exam-

ining the interfaces between chains. Since many zinc binding sites are between

chains, relying on asymmetric units would produce data that is not particularly

meaningful. An example of this would be insulin, which is a hexamer of six chains

and two zinc binding sites, with each chain providing one histidine residue to one

of the two binding sites. For many insulin structures, the asymmetric unit con-

tains just one chain in this hexamer and suggests that the ‘binding site’ is a single

histidine residue. Only by using the lowest energy biological assembly is the full

hexamer constructed, and the true binding sites made available for analysis.

However it is important to keep in mind that, necessary though biological assembly

generation is, it does introduce some problems. Many assembly instructions are

simply to use a subset of the chains in the asymmetric unit, which is fine, but

some require copies of chains to be created. For example, a structure that starts

out with an A chain and a B chain may, in its biological assembly, have two A

chains and two B chains. As there is no established protocol for generating new

IDs for these chains (and since creating one would create inconsistencies with other

software that uses the data in the ZincBind database, such as the NGL protein

viewer), the solution used here is simply to have multiple chains with the same
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ID. This can cause a number of problems which will be outlined, along with their

solution, as they arise in this section.

Once the correct assembly has been generated, the algorithm then checks that the

resultant structure is usable, and is not just alpha carbons as some structures are.

If it is such a ‘skeleton structure’, the zinc atom(s) in that structure are saved to

the database with an annotation explaining that they do not have a binding site

because the PDB was unusable. Note that this is the case whenever a zinc atom

is rejected — it is still saved to the database with an explanatory annotation,

because by doing this every zinc atom in the Protein Data Bank can be accounted

for in ZincBind. If this were not done, and a user tried to find a particular zinc

atom from the data bank in ZincBind which had not been assigned a binding

site, that user would have no way of knowing if the zinc atom was absent because

ZincBind had not examined that PDB, or if it was absent because a binding site

could not be assigned to it.

Any zinc atoms that are in the asymmetric unit but not the biological assembly

(common in cases where the asymmetric unit is just the biological assembly re-

peated multiple times) are also saved to the database without a binding site, with

an explanatory explanation as to why it has none, for the same reason.

The next step is to actually identify all of the binding sites. This is done as follows:

1. Identify all metals in the structure. This is done using element names in

atomium, but it is here that the first biological assembly related problems

must be dealt with. When these assemblies are being generated, sometimes

atoms end up superimposed on top of each other — so called ‘special position’

atoms. The correct interpretation of this is that there is just one atom here,

not multiple atoms occupying the same position in space, so duplicates have

to be removed. This is done with atomium by taking all atoms of a given

element, comparing it with every other atom of that element, and if the

distance between them is less than 1 Å, one is removed.

2. Determine the atoms which ligand each metal in the structure. All atoms

within 3 Å of the metal which are not carbon or hydrogen are determined,

and again duplicated atoms must be removed from these using the same
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algorithm as above (insulin structures for example, often have a chloride

ligand which would appear multiple times in the same location otherwise).

Once this ‘cloud’ of suitable liganding atoms is obtained, they are ordered

by distance to the metal, and for each one a check is made that the angle

formed between it, the metal, and any closer atom is not less than 45◦. If it

is, the atom is removed from the set of liganding atoms as it is assumed a

coordinate bond would be infeasible if there is another coordinate bond so

close obstructing it.

3. Remove metals that probably aren’t physiologically relevant. Sometimes a

metal atom in a model is just there as a consequence of the crystallisation en-

vironment, and while it may interact with one or two residues, those residues

might not be a ‘real’ zinc binding site in the sense of being an evolutionarily

selected combination of residues there specifically to bind zinc. There is no

way to identify with certainty which category a given zinc atom falls into

from atom coordinates alone, but ZincBind implements a filter whereby if

a metal atom has fewer than three protein liganding atoms, it is discarded

as probably irrelevant. Again, those atoms which are excluded at this stage

are given an annotation explaining the reason, if they are zinc atoms.

4. Merge the metals into single binding sites where necessary. So far, all metals

have been considered in isolation, though in reality some of them may form

co-functional units with each other. To determine if this is the case, the

residues/ligands that the liganding atoms are part of are examined and, if

two metals share a residue/ligand, they are assigned to the same ‘cluster’.

5. Remove non-zinc binding sites. ZincBind is a database of zinc binding sites.

So far all metals have been considered because some non-zinc atoms may be

part of a multi-metal site that contains zinc, so had to be included at every

step. However now that the fully processed sites have been generated, those

that do not contain zinc can be removed.

6. Identify the secondary residues of each of the binding sites. This is the

set of all residues which are within 3 Å of a primary liganding residue.

These residues are saved, along with the details of which atoms mediate

these interactions. The importance of second shell residues in stabilising the
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Figure 4.1: An illustration of how the ZincBind build algorithm identifies
binding sites. Those with no zinc (top left) or too few liganding atoms (bottom

left) are rejected.

primary liganding shell has been well documented, so identifying how many

of these stabilising contacts exist is important information.

See Figure 4.1 for an illustration of this process.

Now that the zinc binding sites have been identified, they can be saved to the

database. Before this is done however, the chain objects are saved to the database,

as these records will be needed when the sites are saved. Any chain in the structure

with a residue that is part of a binding site is saved. The sequence used is the full

canonical sequence listed in the header of the structure file, not the actual sequence
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of residues in the model, which may contain missing residues (particularly at the

ends of the sequence). These two sequences are aligned using the Smith-Waterman

local alignment algorithm [105] so that the liganding residues in the model can be

identified in the full sequence, and capitalised.

Then the sites themselves are saved to the database, along with records for any

metals, residues, and residue atoms. So-called ‘Chain-Site Interactions’ are also

saved, which are essentially chains with only a single site annotated within them.

While the plain chain objects saved above have residues involved in any binding

site highlighted, here only the residues involved in that particular site are. This is

important as chains may be involved in multiple sites, but predictive models need

to know which residues contribute to single sites.

4.1.2 Equivalent Sites and Families

The database as it stands at this point in the algorithm will be a list of zinc

binding sites, where each site is considered distinct and separate from all others.

This is somewhat misleading, as many proteins appear in the Protein Data Bank

several times, and so the binding site(s) in those structures will appear in ZincBind

several times. The binding site in (for example) Carbonic Anhydrase will appear

in ZincBind many hundreds of times, yet each of these records refer to the same

biological entity.

To account for this, ZincBind clusters binding sites into equivalent sites called

‘groups’. The first step is to cluster the zinc binding chains (some of which will be

associated with multiple sites, some of which will make up only part of indivudual

sites) that were saved as part of the earlier generation process into clusters on 90%

sequence identity, using the program CD-HIT [95]. It is assumed that chains in a

CD-HIT sequence cluster are functionally equivalent.

The binding sites themselves are then clustered using these chain clusters. Two

zinc binding sites are assigned to the same cluster if (1) they are associated with

the same chain cluster(s), (2) they have the same residue names in the same order,

and (3) their surrounding residue names are the same. These latter two steps are
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important to ensure that chains with two or more zinc binding sites along them

do not have those binding sites incorrectly assigned to the same cluster.

A group object is stored in the database for each of these clusters, and the corre-

sponding zinc binding sites are linked with them. Thus ZincBind stores individual

zinc binding sites as they occur in the Protein Data Bank, and unique zinc binding

sites in the form of groups.

Binding sites and groups form two components of the three-part hierarchy of data

in ZincBind, the third being the family. Each binding site is given an alphanumer-

ical code based on its residue content and count — so, for example, binding sites

with three histidine residues are ‘H3’, those with two histidines and two cysteine

residues are C2H2, and so on. These make up the ‘family’ to which the binding

site belongs. Binding sites are clustered into groups, which are in turn clustered

into families based on residue content.

4.2 The ZincBind Web Resource

As already noted, the creation of this dataset was intended to serve both as the

primary dataset of this project, and as a publicly available resource. This resource

is called ZincBind, and is available over the web.

The database is accessible via a GraphQL API, which allows any specific object,

or set of related objects, to be requested in a single HTTP request (see Figure 4.2).

This is available at api.zincbind.net and is the primary means of obtaining data

from ZincBind in an automated fashion. As outlined in Chapter 2, this is created

using the Python web framework Django (particularly its Object Relational Man-

agement system) and the GraphQL library graphene.

More accessibly for casual browsing, there is also a website available at zincbind.net.

This is a lightweight web frontend that interacts with the database via the

GraphQL API and presents it to the user graphically. It is a responsive, mobile-

first layout created with the front-end framework ‘react’, that adapts to different

screen sizes.

api.zincbind.net
zincbind.net
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{
pdb(id: "3W7Y") {

title

rvalue
depositionDate
zincsites {
count

edges {

node {
id
family

}

}

}
}

}

{

"data": {
"pdb": {

"title": "0.92A structure of 2Zn human insulin at 100K",
"rvalue": 0.16105,
"depositionDate": "2013-03-11",

"zincsites": {
"count": 1,

"edges": [
{
"node": {

"id": "3W7Y-1",
"family": "H3"

}
}

]

}
}

}
}

Figure 4.2: An example of a ZincBind GraphQL API query, in this case for a
PDB object. There requesting all the zinc binding sites within that PDB — there
is one in this case. In this case the fields id and family are requested for each,

though they also have other fields.

Figure 4.3: The home page of ZincBind, showing the overview statistics in
the top-left, and the quick search text box in the top right. The menu bar at the
top collapses on small screen widths, making them accessible via a drop-down

menu on mobile.

The home page (see Figure 4.3) contains a short, clear statement of what ZincBind

is (a “database of zinc binding sites, automatically generated from the Protein

Data Bank”) as well as a brief overview of its key metrics: number of unique

binding sites, total number of binding sites, and the number of PDB files the sites

are derived from.
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Figure 4.4: The advanced search interface, allowing searching of PDB files,
or individual zinc binding sites.

Searching of the database can be done in one of four ways. Firstly, from the home

page, the user can enter a search term that will be used to search multiple PDB

fields at once: title, PDB code, classification, etc. This is for users who just want

to find entries that have any relation to a given term at all, and provides an easy,

low-friction way for a user to submit a search immediately.

Secondly, the user can navigate to the Advanced Search page (see Figure 4.4),

where they can specify a more precise search by one or more PDB fields. This

also allows searching by numeric cutoffs, such as for PDBs better than a certain

resolution or deposited after a certain date — essentially any of the PDB metrics

that are stored in the database.

Thirdly, via this same page they can search for specific binding sites rather than

for containing PDB structures. The user can pick the same metrics as for PDBs

(sites in PDBs better than a certain resolution, with a certain classification, etc.)

as well as site-specific metrics, such as sites of a particular family, or containing

particular residues.
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Figure 4.5: The BLAST search interface.

Finally, the user can provide a sequence and perform a BLAST search against

the database (see Figure 4.5). This uses the NCBI blastp binary on the back-

end, whose JSON output is processed by python functions and exposed via the

GraphQL API. This produces chain sequence results (see Figure 4.6), rather than

PDB/sites as the other methods do.

The search results for the first two modes of searching are returned as a list of

matching PDBs, with binding sites nested within them. Both the PDB and the

sites themselves are clickable and will take the user to the page for that entity.

Search results can be sorted by a variety of metrics, and are paginated to 25 results

per page (see Figure 4.7).

PDB pages represent PDB records (see Figure 4.8). They provide basic infor-

mation for that PDB (resolution, R-value, classification, source and expression

organisms, experimental technique, deposition date, and keywords — the latter

of which acts as a link to search by any of those keywords), as well as overviews

of the zinc content of that PDB. The zincs associated with a binding site are

listed as clickable links, while those without a binding site are listed along with

their omission reason. Finally, there is a 3D manipulatable view of the PDB with

all of its zinc binding sites. This uses the NGL Javascript library, and beside
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Figure 4.6: An example of BLAST search results.

Figure 4.7: An example of paginated (over two pages in this case) search
result showing matching PDBs, and the zinc binding sites they contain.
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Figure 4.8: An example of a PDB page in ZincBind, showing basic informa-
tion for that PDB. The three-dimensional structure view is further down the

page.

it is a set of basic options for manipiulating the view, such as rotation options,

background colour, and binding site highlighting — this is in addition to NGL’s

built-in touch/drag/zoom manipulation. Generally the PDB page limits itself to

information relevant to the structure’s role as a zinc binding protein, but a link to

the equivalent RCSB page is also provided for more information.

The binding site pages (see Figure 4.9) contain more detail for that specific binding

site, such as its mode of coordination, and links to equivalent sites in the same

group. There is also a 3D manipulatable model of the binding site on this page —

this is broadly the same as that on the PDB page, except zoomed in to the specific

site and with selectable individual residues and metals. The page also contains a

summary of information for the containing PDB, and a link to that PDB’s page.

ZincBind also has a page that gives an overview of the dataset as a whole (see

Figure 4.10). This contains charts for residue distribution, experimental methods,

residue codes, resolution, species frequency, and PDB classification. These are

intended to give a sense of the key properties of the database ‘at a glance’. There

are also links to a page containing all data (essentially a modified version of the

search results page that shows all PDBs, paginated), a link to an overview of the
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Figure 4.9: An example of a binding site page in ZincBind, with the manip-
ulatable 3D NGL viewer, zoomed in to this binding site.

GraphQL API, and a link to a page showing how the sites are clustered into families

and groups. Here each group lists the keywords and classifications that the sites

in that group have in common to try to provide an automated way of annotating

what the binding site the group represents actually does (see Figure 4.11).

There is a page dedicated to the prediction of binding sites that uses the separate

prediction API, but this will be covered in greater detail in the next chapter.

Finally, ZincBind has a help page, structured as a series of questions that a user

may have.

Ultimately, the website is intended to serve as a way of broadening access to the

database, which is continually updated. The API provides access to the data for

researchers who need bulk access to the data, whereas the web frontend allows an

individual to explore the data more casually to get a sense of what research might

be carried out with it.
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Figure 4.10: Overview statistics for the dataset presented on the ZincBind
data page.

Figure 4.11: A ZincBind group page, summarising the clustered zinc binding
sites and providing links to individual site pages.
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4.3 Data Analysis

The finished dataset offers a useful insight into the general properties of zinc bind-

ing sites, or at least that subset of zinc binding sites for which structural informa-

tion is available. Some of these properties are of use in building predictive models

of zinc binding sites, whereas others are of more general interest. An overview

of the main findings that can be gleaned from the dataset will be presented here.

All values are correct at the time of writing (February 2021), though as this is a

continually and automatically updated dataset, the precise values will vary as time

goes on. It is not anticipated that these changes will alter the overall conclusions,

as the dataset is very large already.

4.3.1 The Prevalence of Zinc

Of the 174,014 PDB structures in the Protein Data Bank at the time of the most

recent database update, 17,556 contained at least one zinc atom and are accounted

for in ZincBind. This proportion, 10.1%, is very close to the 10% of human proteins

usually said to contain zinc, though as the Protein Data Bank does not purport

to be a representative sampling of any genome, human or otherwise, there was no

particular reason for this to be the case.

4.3.2 Qualifying Atoms

In total, when run in February 2021, ZincBind identified 65,595 zinc atoms and

1,138 other metal atoms associated with zinc atoms when searching the raw coor-

dinates of the PDB asymmetric units. Other metals are only stored in ZincBind

if they are part of a multi-metal binding site with at least one zinc atom, so the

vast majority of metals in the database are zinc. Of the non-zinc metals, the most

common of these ‘co-active’ metals are magnesium, potassium, iron and copper

(see Table 4.1).

Of the 65,595 zinc atoms in the database, 24,246 (37.0%) are not associated with

any binding site, and are in the database solely to acknowledge their existence.
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Table 4.1: Prevalence of various non-zinc metals in ZincBind.

Metal Count Relative Percentage
Potassium 319 28.0%
Iron 188 16.5%
Copper 15 13.6%
Magnesium 132 11.6%
Sodium 100 8.8%
Calcium 90 7.9%
Manganese 75 6.6%
Cadmium 38 3.3%
Cobalt 31 2.7%
Nickel 6 0.5%
Vanadium 3 0.3%
Barium 1 0.1%

The most common reason for not assigning a zinc atom to a binding site is that

the atom is duplicated multiple times in the asymmetric unit, but appears only

once in the biological assembly used for processing; 13,124 metals were excluded

for this reason. For example, PDB entry 1A4L contains four chains, each with one

zinc atom, but the biological assembly only uses one. The other three are stored

in ZincBind with an omission reason, but have no binding site assigned to them.

Figure 4.12 shows the breakdown of zinc atoms by omission reason.

Using the full biological assembly leads to zinc ions being both excluded, and in-

cluded as being associated with binding sites. As stated above, it is common for

the asymmetric unit of a PDB file to contain multiple copies of the biomolecule

of interest as a result of crystallization, but once the ‘correct’ assembly is chosen,

these duplicated zinc atoms will be absent from the final structure. Conversely,

using the full biological assembly rather than just the raw asymmetric unit coordi-

nates of the PDB is crucial when the zinc atom is present at an interface between

chains. In the asymmetric unit, there may be a single residue coordinating with

the ion; if symmetry were not considered, such a model would be discarded by the

ZincBind algorithm as a salt.
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Figure 4.12: Illustrating the relative frequency of omission reasons for zinc
atoms that were ultimately not assigned to a binding site. There were 8 which
were omitted because the PDB structure did not contain side chains — insignif-

icant compared with the other two reasons.

4.3.3 Zinc Binding Sites with High Representation

The 42,487 metal atoms, for which binding site information is stored, belong to

a total of 38,035 zinc binding sites in ZincBind. After clustering the proteins at

90% sequence identity and then clustering the binding sites as described above,

there are 17,471 unique zinc binding sites in the database. The binding site with

the most copies is from carbonic anhydrase (355 copies), a catalytic serum protein

and, as already noted, the first known zinc binding protein. This is followed by

JMJD2D (247 copies), a lysine-specific demethylase. 11,785 (67.5%) zinc binding

sites are currently unique in that they have only one structure, and are therefore

only represented once in ZincBind. This distribution is shown in Figure 4.13

For each cluster of equivalent zinc binding sites, the best-resolution structure is

chosen to provide a single site which is flagged as the ‘representative’ for that

cluster.
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Figure 4.13: The distribution of binding sites among groups for the hundred
most populated groups.

4.3.4 Liganding Residues

The binding residues that dominate zinc binding sites are well established: cys-

teine, histidine, and the acidic residues aspartate and glutamate. This is sup-

ported by the data in ZincBind. There are a total of 161,324 liganding residues

in ZincBind, of which those four ‘CHED’ residue types, together with water, com-

prise 93.0% of all zinc-liganding residues. Note, however, that this considers every

binding site in the database. When non-redundant sites are studied (i.e. only one

site per cluster thereby removing the bias towards more intensely studied pro-

teins), these five comprise a slightly smaller percentage of zinc-liganding residues

(92.0%). This suggests that the binding sites most frequently appearing in the

PDB show slightly less variation than a more representative sampling.

The secondary residues, those which contact the primary liganding residues, are

also stored in ZincBind and here there is more variation. The most common sec-

ondary residue is Glyceine (9.1%), followed by leucine (7.4%) and alanine (7.2%).
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Figure 4.14: There is a weak correlation between residue hydrophobicity and
their frequency as a secondary residue in zinc binding sites.

Broadly speaking, hydrophobic residues tend to be slightly more predominant than

hydrophilic residues, which can be seen when the twenty amino acids’ hydropho-

bicities are plotted against their frequency, which shows a correlation coefficient

of 0.34 — a weak but significant link (see Figure 4.14).

If the primary binding residues’ single letter codes are combined to give an overall

‘signature’ of the binding site, C4 (four cysteine residues) is the most prevalent,

with 3,069 of the 17,471 unique binding sites having this arrangement of residues

(17.6%) - followed closely by C3H1, with 2149 (12.3%). That the most common

signature makes up just 17.6% of the total is indicative of the relatively high

diversity in such signatures. Between them, the top ten residue signatures account

for just 64.4% of the total.

Of the 24,200 redundant binding sites that contain just one zinc atom, and which

come from structures with resolutions better than 3Å, the most common mode of

coordination is via four liganding atoms: 15,077 examples (62.3%). 5-coordination
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and 3-coordination have similar prevalences: 4504 (18.6%) and 1840 (7.6%) respec-

tively. It is likely that 3-coordination is being over-represented here as, in practice,

many sites which have three liganding atoms in the PDB structure are likely miss-

ing a fourth ligand in the form of water, meaning that tetrahedral geometry is

probably even more widespread than suggested here.

This same subset of binding sites can be used to investigate liganding atom dis-

tances. Nitrogen and sulphur atoms both have characteristic distances with tight

distributions: 2.12 ± 0.16Å and 2.34 ± 0.12Å respectively (error ranges are stan-

dard deviations). Oxygen however has a much wider distribution, as it can be

provided by either of the carboxylate oxygens of the acidic side chains, or from

water, with the angle of these two atoms varying continuously. Its average distance

to zinc is 2.29±0.22Å. Overall the average metal-ligand distance is 2.25±0.24Å(see

Figure 4.15)

4.3.5 Co-active Binding Sites

In some cases multiple metals act in concert to form a single functional unit. Such

sites are generally referred to as co-active binding sites in the literature (or ‘co-

catalytic’ where the site is known to have a catalytic function). Here, such sites

are defined as those instances where a single residue is liganded to more than one

metal, according to the criteria defined above. The metals are organised into a

single site as described in the methods.

In ZincBind, 3976 from the total of 38,035 zinc binding sites (12.7%) contain

multiple metals: 3550 contain two metals, 394 contain three, 22 contain four,

two contain five, and eight zinc binding sites contain six metals (though two of

these are from a synthetic construct). In some cases these are binding sites with

multiple zinc atoms, but in others the zinc is acting in concert with other metals.

Potassium is the most common, represented 319 times, followed by iron (188) and

copper (155).

These multi-metal sites account for all of the non-zinc metals in the ZincBind

database. While the term ‘co-catalytic’ is sometimes used interchangeably with

‘co-active’, only 83.6% are derived from an enzymatic protein (defined here as a
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Figure 4.15: The distribution of liganding atom distances in all single-zinc
sites, with a resolution better than 3Å. The overall distribution can be seen
as bimodal, with the first peak being the preferred distance of nitrogen and
oxygen, and the second peak being the preferred distance of sulphur, which
has a greater Van der Waals radius. While nitrogen and sulphur both have
tight distributions, oxygen does not, and has a much more prominent tail in its

distribution.

protein name ending in –ase). However this compares with just 61.1% of all zinc-

only binding sites that are enzymatic. A Fisher exact test showed the difference

to be significant (p < 0.00001).

4.4 Conclusion

ZincBind is a database of zinc binding sites — as such it is both a valuable dataset

for this PhD, in the sense that it will serve as training data for predictive models of

zinc binding (see Chapter 5), but it is also a useful resource in its own right. It is is

publicly accessible, with a modern GraphQL API and responsive website providing

access to the data. The data itself is continuously and automatically updated, and
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has charactersitics broadly in line with previously observed properties of zinc and

other metal binding sites in previous, smaller datasets.

The remainder of this thesis will focus on the dataset’s role as a training set for

predictive models.



Chapter 5

Predicting Zinc Binding Sites

Note that some of the material in this chapter has been published in the journal

Molecules under the title ‘Zincbindpredict—Prediction of Zinc Binding Sites in

Proteins’ (2021) pp.966 [106].

The aim of this part of the PhD is to create a system which conceptually is quite

simple — it would take as its input a protein sequence or protein structure, and

output a list of zero or more residue combinations which are predicted to form a

zinc binding site, with an accompanying probability.

This system is a machine learning system; it uses binary classifiers trained on the

large dataset of zinc binding sites described in Chapter 4 which ‘learn’ what zinc

binding sites look like from that data.

This chapter will describe the approach taken to solving this problem, the models

created, the architecture of the system from the user’s point of view, and how the

models are accessed and used.

5.1 Approach

As explored in Chapter 2, there have been multiple studies in the past which have

used machine learning (or simpler methods) to create zinc-binding predictors (or

general-purpose metal-binding predictors). Many of the general principles of these

88



Chapter 5. Predicting Zinc Binding in Proteins 89

studies are adopted here, however there are two crucial methodological changes

that have been made.

One recurring feature of previous work, particularly in the sequence-based predic-

tive models, is the focus on zinc binding residues rather than zinc binding sites. In

most cases, the entity examined by the predictive model is the individual residue,

often with a surrounding linear sequence ‘window’ of residues. The model then

assigns a probability as to whether that residue is a zinc binding residue. As

outlined in Chapter 2, this approach has had a measure of success, but it is a

somewhat artificial concept. There is, after all, no such thing as a zinc-binding

residue in isolation. The individual residues of a high-affinity zinc binding site of

the kind considered here are only zinc-binding when the other residues are present,

and conversely many non-zinc-binding residues could bind zinc if other residues

were present in the correct locations. It is particular combinations of residues,

not individual residues, which are zinc binding — an important fact not usually

considered in research of this kind. As this chapter will explain, models have been

created here which inspect residue combinations, not single residues.

Another commonality is the treatment of zinc binding sites as a single category,

and the presumption of properties that are common to them all regardless of the

residues of which they are comprised. This may well be sufficient, particularly

as there are essentially only four residues that make up the vast majority of zinc

binding sites, but it is possible that properties used for prediction have much

tighter distributions within particular sub-categories of zinc binding sites. As such,

rather than creating a single model that predicts zinc binding in structures and

another that predicts them in sequence, one model has been created per family of

zinc binding site, of the kind described in Chapter 4 1. That is, there is a model for

predicting H3 binding sites (those made of three histidine residues) in structure,

one for predicting H3 binding sites in sequence, one for predicting C2H2 binding

sites in structure, one for predicting C2H2 sites in sequence, and so on. As well

as the increased specificity this affords, another advantage of this approach is a

purely practical one. All the possible H3 binding sites in a protein are found by

taking all combinations of three histidine residues, and while the combinatorics of

1‘Family’ is used in the sense of the family of liganding residues and is not related to homol-
ogous families.
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this can lead to large numbers of potential sites to check, it is vastly smaller than

the combinations of all residues that would need to be checked if the model were

supposed to look for generic zinc binding sites — an infeasible task for all but

the smallest of proteins as the number of residue combinations quickly becomes

impractically enormous.

The overall pipeline of the resulting system for predicting zinc binding then, is that

when a protein structure or sequence is given, for each family for which there is

a model, all residue combinations within that protein which match the family are

identified (all unique combinations of three histidine residues for H3, for example)

and passed to the relevant model, which assigns a probability that the residues

comprise a zinc binding site, as well as making a binary yes-or-no prediction.

This is repeated for every combination, and for every family, to build up a list of

predicted binding sites.

5.2 Data Preparation

The first decision to make was which families to use. There are 701 families in total

in ZincBind, ranging from C4 with its 3069 unique representatives, to obscure fam-

ilies like C1D1E1H2 (one cysteine, one glutamate, one aspartate and two histidine

residues) which has only one representative. In fact there are 244 families with one

representative, and many with only a small number of representatives. To train

a model that can recognise some combination of residues as being a zinc binding

site of some family rather than some random combination, the model needs to be

trained on many examples of such sites, so there is clearly a minimum number of

representatives in the database that a family must have for it to make sense to

train a model for it. It is not immediately obvious what this minimum number

should be. Initially it was decided to use the top ten families: C4, C3H1, C2H2,

D1H2, E1H2, H3, C3, E1H1, C2H1 and D1H1. This was originally a somewhat

arbitrary cutoff and the intention was to adjust it based on results, though as this

chapter will show, ten families is probably the correct number in terms of resultant

dataset size.
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For a binary classifier of the kind being created here, the training set is a collection

of positive samples (combinations of residues of that family which represent zinc

binding sites) and negative samples (combinations of residues of that family which

are not zinc binding sites). An assumption being made here is that if a combination

of residues does not have a zinc atom bound to it in a structure, it is not a zinc

binding site. This may not be true occasionally, as the structure simply may not

have been crystallised in the presence of zinc. For this reason, some of the negative

samples in the training sets may actually be positive. It is assumed however, that

these cases are sufficiently infrequent as to have a negligible effect.

The residue combinations are represented in the training data as a vector of mea-

surements, with the final measurement being the indicator of whether it is positive

(1) or negative (0). Each row in the training data represents a residue combina-

tion, each column a feature. There are twenty training datasets altogether; for

each of the ten families there is a training set for sequence data and a training set

for structural data.

5.2.1 Sequence Training Data

To generate the sequence training datasets, for each family the ZincBind API was

queried for all binding sites of that family, and those split over multiple chains

were removed to leave single sequence binding sites — the multi-chain zinc bind-

ing sites do not have a single sequence containing all the necessary residues in

the combination. The resulting sequences were turned into feature vectors which

contained the number of residues between each pair of binding residues, the av-

erage hydrophobicity (Wimley and White’s scale [107]) of residues either side of

the binding residues, using windows of size 1, 3 and 7, and the average number of

charged residues either side of the binding residues, using the same window sizes.

These fetaures are summarised in Table 5.2. This created a dataset of positive

samples.

For the negative samples, for each family a sequence was chosen at random from the

set of all unique sequences in UniProtKB and a combination of residues within that

sequence matching the family but not a known binding site, was selected — this
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was done repeatedly until a list of negative samples was built up equal in size to the

positive dataset. The exclusion of sequences known to bind zinc, even if they have

many residues combinations within them matching the family which do not bind

zinc, ensured that no positive samples tainted the negative dataset (unidentified

zinc binding sites notwithstanding). The two datasets were combined into a single

dataset for each family. The resultant dataset is summarised in Table 5.1.

5.2.2 Structure Training Data

To generate the structure training datasets, for each zinc-binding family, all rele-

vant zinc binding sites belonging to a PDB structure with resolution better than

2 Å were downloaded. As many of the measurements made are geometric, precise

atom distances are important, and structures with too poor a resolution would

create unreliable data for this purpose. For each PDB entry, the structure was

downloaded and parsed using the Python library atomium (see Chapter 4), assem-

bled into the correct biological assembly, and then each binding site was turned

into a feature vector using the following measurements: mean inter Cα distance of

the liganding residues, standard deviation of the Cα distances, minimum Cα dis-

tance, maximum Cα distance — and the corresponding measurements for the Cβ

atoms, for a total of 8 geometric features. The distances used are all the pairwise

combinations of the atoms involved, so H3 sites will have three inter Cα distances,

C4 sites will have six, and so on. The final feature is the ‘hydrophobicity contrast

function’, calculated at the centre of the Cβ atoms with a radius of 7 Å, This

algorithm is a measure of how much outer atoms in a sphere are more hydropho-

bic than inner atoms, with higher values previously shown to be associated with

centres of metal binding [10, 11], as described in Chapter 1.

As with the sequence data, this was repeated on combinations of residues with no

known zinc binding ability until there was an equal number of negative samples.

For these random combinations, PDB structures with no zinc atoms were selected

at random (random sampling with replacement), and any random combination

of residues from within that structure which matched the binding site family in

question was selected — after applying a distance cutoff heuristic of 30 Ångströms

between the alpha carbons to ensure that the distances between residues in the
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Table 5.1: The sizes of the twenty training set sizes used to train the models.
In each case the size is less than the theoretical maximum of double the total
number of sites per family, because the sequence sites have those with multi-
ple chains filtered out, and the structure sites have those from poor resolution
structures filtered out — in the latter case this effect is considerable in reducing

the total from its theoretical maximum.

Family Structure Dataset Size Sequence Dataset Size
C4 2825 15332
C3H1 3232 9158
H3 3078 4524
E1H2 1287 2574
C2H2 702 3715
D1H2 982 2406
C3 407 2591
C2H1 506 1926
D1H1 522 804
E1H1 416 812

negative dataset are of the same order of magnitude as those in the positive dataset.

This step is necessary to ensure that the model did not simply learn that residues

far apart spatially are not zinc binding and residues close together are zinc binding

(as the majority of the negative dataset would be filled with very distant residues),

but rather forces it to learn to identify when the residues are spatially close but

not zinc binding. The resultant dataset is summarised in Table 5.1.

5.3 Model Training

While the quality and size of the training set is a large determinate of eventual

model quality, the choice of machine learning algorithm is also crucial. Chapter

2 explored the history of metal binding site predictive models and the various

algorithms used — as expanded upon there, there has been a shift towards the

use of artificial neural networks over the past five years. The primary reason

behind this shift has been the vast increase in the size of available datasets, which

are generally required for something which uses as many layers of abstraction as

neural networks. As the datasets here are necessarily quite small compared with
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Table 5.2: Details of how features are calculated for residue combinations in
structure and sequence models. Hydrophobicity of sequence residues is defined
using Wimley and White’s scale [107], charge is the count of charged residues
(aspartate, glutamate, arginine, histidine and lysine). Structural features were
chosen based on previously identified markers of zinc binding in structures (see
Chapter 1). Sequence features were chosen based on features known to be

effective at predicting zinc binding in sequences (see Chapter 2).

Model type Feature
Sequence

Inter-residue distance (one per gap)
Average hydrophobicity around residues (window 1)
Average hydrophobicity around residues (window 3)
Average hydrophobicity around residues (window 5)
Average number of charges around residues (window 1)
Average number of charges around residues (window 3)
Average number of charges around residues (window 5)

Structure

Mean Inter-Cα distance
Maximum Inter-Cα distance
Minimum Inter-Cα distance
Inter-Cα distance standard deviation
Mean Inter-Cβ distance
Maximum Inter-Cβ distance
Minimum Inter-Cβ distance
Inter-Cβ distance standard deviation
Hydrophobic contrast (radius 4 Å)

those datasets (a deliberate tradeoff made in the hopes of creating highly specific

models), it was decided that such algorithms were not appropriate.

K-Nearest Neighbor, Support Vector Machines, and Random Forest algorithms

were therefore considered. Originally, the intention was to train a model with

each of these algorithms and have the final model be a consensus of these three

whereby they vote on each incoming residue combination. However early testing

showed that Random Forest so consistently and significantly outperformed both

the other two models in isolation, and the resultant consensus model, that it was

ultimately decided to solely use Random Forest for training.

The actual training of the models was done using the Python library scikit-learn

[108]. For each training dataset, the data was randomly split into training and test
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data using an 80:20 split — the former used to train, the latter used to evaluate.

As explained in Chapter 2 this is vital to ensure the resultant model is not overfit.

The hyper-parameters for each model were selected separately using 5-fold cross

validation of the training set. The hyper-parameters explored were the impurity

measure (gini vs. entropy — the algorithm used to split individual trees at each

node), the maximum depth that the component trees could have (4, 6, 8 or no

maximum), the number of trees in the forest (10, 100 or 1000), and the means

of determining the best number of features at each split (either the square root

of the number of features, or the log2 of the number of features). Once optimal

hyper-parameters were identified (determined by which combination produced the

best MCC score in the cross-validation), the models were trained with those hyper-

parameters using the entire training dataset.

Once the model was trained on the ideal hyperparameters using all the training

data, the model was evaluated on the test data, and the true positive, false positive,

true negative and false negative counts were calculated. From these the recall,

precision, F1 score, and Matthews’ Correlation Coefficient were calculated. All of

these were saved to the model by making them properties of the actual Python

object, and then this Python object was serialised to disk using the Python ‘joblib’

library for later use.

5.4 Model Performance

For the structural models, the lowest MCC score was 0.88 (for the E1H1 model).

This, and the D1H1 model (MCC=0.91), relies on the geometry between just

two residues, which makes creating a distinct separation between the two classes

somewhat more difficult — though their performance is still very close behind

the three-residue and four-residue family models. The structure models had an

average MCC of 0.960 (see Table 5.3).

The sequence models also had high scores, though were more variable. The four-

residue sites in particular had highly conserved patterns of residue spacing and

flanking hydrophobicity. The average MCC score for the sequence models was
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Table 5.3: Results for structure models, sorted by Matthews Correlation Coef-
ficient (MCC). The two-residue families’ performance was lower than the others
as there is essentially just the measurements between two centres to perform the
classification, but still scored relatively highly. Four-residue sites in particular

were found to have very predictable properties.

Family Dataset Size Recall Precision F1 MCC
C2H2 702 1.00 1.00 1.00 1.00
C4 2825 1.00 1.00 1.00 1.00
C3H1 3232 1.00 0.99 1.00 0.99
E1H2 1287 1.00 0.99 1.00 0.99
C2H1 506 1.00 0.98 0.99 0.98
H3 3078 1.00 0.98 0.99 0.98
D1H2 982 1.00 0.98 0.99 0.98
C3 407 1.00 0.98 0.99 0.98
D1H1 522 1.00 0.91 0.95 0.91
E1H1 416 0.93 0.95 0.94 0.88

0.87, with the lowest MCC being 0.61 for the E1H1 model and 0.74 for the D1H1

model — again the two two-residue models were some way behind the MCC of

0.84 for the C3 model (see Table 5.4).

The high performance of the models appears to justify the methodological changes

made compared with previous metal binding classifiers. The performance scores

here compare favourably with recent comparable predictive models based on struc-

ture and sequence covered in Chapter 2 — most notably the ‘SVM and Sample-

weighted Probabilistic Neural Network’ (MCC= 0.80) [71], the ‘meta-zinc predic-

tor’ (MCC= 0.79) [89] and ZincExplorer (MCC= 0.78) [88].

While the training is affected by dataset size, this does not appear to be a sig-

nificant limiting factor for most of the models here. Figure 5.1 shows the model

performance (as MCC) for the sequence and structure models. The performance

of the sequence models falls off as the dataset falls below a threshold number of

data points in the low thousands — as does the performance of the structural

models. The lowest three performing structural models were also the lowest three

in dataset size (C3, E1H1, D1H1), but two of these have only two residues so, as

discussed above, the performance might not be expected to be very good.
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Table 5.4: Results for sequence models, sorted by Matthews Correlation Co-
efficient (MCC).

Family Dataset Size Recall Precision F1 MCC
C4 15332 1.00 0.98 0.99 0.98
H3 4524 0.98 0.99 0.98 0.97
C2H2 3715 0.97 0.99 0.98 0.95
C3H1 9158 0.98 0.96 0.97 0.94
E1H2 2574 0.95 0.97 0.96 0.92
D1H2 2406 0.94 0.95 0.94 0.90
C2H1 1926 0.93 0.95 0.94 0.88
C3 2591 0.95 0.89 0.92 0.84
D1H1 804 0.80 0.93 0.86 0.74
E1H1 812 0.81 0.83 0.82 0.61
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Figure 5.1: Model Performance (MCC) as a function of training set size.
Below 4,000 rows, performance declines sharply, though above this threshold

there ceases to be a strong correlation between the two.
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Figure 5.2: Learning curves for all 20 models. Each model was trained on
increasing subsets of the overall training set using five-fold cross-validation. Se-
quence models improved with increasing dataset size, suggesting smaller dataset

sizes would not be feasible, whereas structure models did not.

Learning curves (Figure 5.2) using fractions of the datasets show a correlation

with dataset size for the sequence models, but above around 1000 sequences, the

structure models do not improve with larger datasets.

The level of abstraction used to describe both sequences and structures made it

unlikely that any homology between data in the training and testing sets would

artificially improve the performance. The features are largely calculated from

residues around the binding residues, rather than the sequence in which they

occur. However given the presence of similar sequences in the dataset, it was

thought prudent to confirm that these were not artificially increasing the models’

performance.

To this end, the aim was to explore what would happen if only unique sequences

were used, whereby the available sequences are clustered on some similarity thresh-

old, and one representative from each used. Different sequence identity thresholds

were used for clustering with CD-HIT and a training set was created from this new

set of sequences for each threshold, and used to create a model. When clustering at

40% sequence identity (the lowest used), there was slightly lower performance, but

clustering at this level did result in smaller datasets. As indicated previously, this

is a major determinant of these sequence models’ performance, so it was necessary

to determine if this lowered performance was because the dataset size was smaller

(which would mean the original models trained on all the data were not compro-

mised) or if a model trained on unique sequences performed less well, which would

call into question the high scores of the models as being due to such sequences.
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Table 5.5: Model Performance on datatsets clustered at different similarity
thresholds.

Threshold Family Dataset Size Recall Precision F1 MCC

40%

C2H1 286 0.793 0.821 0.807 0.621

C2H2 394 0.952 0.952 0.952 0.898

C3 368 0.947 0.9 0.923 0.839

C3H1 870 0.976 0.901 0.937 0.877

C4 1220 0.976 0.923 0.949 0.895

D1H1 300 0.72 0.6 0.655 0.372

D1H2 422 0.83 0.867 0.848 0.669

E1H1 348 0.583 0.618 0.6 0.201

E1H2 362 0.771 0.692 0.73 0.456

H3 252 0.864 0.792 0.826 0.686

50%

C2H1 326 0.971 0.919 0.944 0.88

C2H2 480 0.958 0.885 0.92 0.836

C3 406 0.929 0.975 0.951 0.904

C3H1 1050 0.957 0.925 0.941 0.865

C4 1502 0.968 0.932 0.949 0.894

D1H1 304 0.63 0.63 0.63 0.336

D1H2 460 0.884 0.776 0.826 0.659

E1H1 350 0.659 0.879 0.753 0.489

E1H2 400 0.8 0.837 0.818 0.597

H3 288 0.697 0.852 0.767 0.533

60%

C2H1 356 1.0 0.778 0.875 0.753

C2H2 546 0.92 0.885 0.902 0.818

C3 450 0.911 0.788 0.845 0.675

C3H1 1154 0.981 0.898 0.938 0.882

C4 1676 0.971 0.949 0.96 0.917

D1H1 308 0.667 0.69 0.678 0.386

D1H2 498 0.804 0.841 0.822 0.677

E1H1 350 0.605 0.657 0.63 0.229

E1H2 428 0.805 0.825 0.815 0.65

H3 330 0.812 0.897 0.852 0.729

70%

C2H1 380 0.947 0.818 0.878 0.746

C2H2 612 1.0 0.933 0.966 0.937

C3 488 0.981 0.912 0.945 0.879

C3H1 1236 0.976 0.931 0.953 0.904

C4 1810 0.947 0.962 0.954 0.906

D1H1 310 0.607 0.607 0.607 0.284

D1H2 516 0.732 0.872 0.796 0.608

E1H1 350 0.759 0.579 0.657 0.364

E1H2 450 0.744 0.842 0.79 0.624

H3 350 0.818 0.871 0.844 0.714

80%

C2H1 408 0.906 0.744 0.817 0.69

C2H2 722 0.932 0.919 0.925 0.848

C3 524 0.921 0.778 0.843 0.749

C3H1 1372 0.992 0.921 0.955 0.915

C4 1934 0.953 0.953 0.953 0.907

D1H1 312 0.733 0.733 0.733 0.491

D1H2 528 0.771 0.755 0.763 0.563

E1H1 352 0.538 0.636 0.583 0.163

E1H2 468 0.776 0.844 0.809 0.62

H3 366 0.756 0.912 0.827 0.663

90%

C2H1 428 0.956 0.896 0.925 0.838

C2H2 828 0.934 0.977 0.955 0.904

C3 542 0.962 0.81 0.879 0.757

C3H1 1500 0.987 0.949 0.968 0.934

C4 2082 0.972 0.963 0.968 0.933

D1H1 316 0.75 0.7 0.724 0.497

D1H2 542 0.873 0.8 0.835 0.654

E1H1 364 0.5 0.548 0.523 0.142

E1H2 476 0.872 0.872 0.872 0.75

H3 390 0.917 0.846 0.88 0.772

100%

C2H1 622 0.968 0.909 0.937 0.874

C2H2 1188 0.952 0.945 0.949 0.89

C3 700 0.941 0.81 0.871 0.739

C3H1 2390 0.983 0.959 0.971 0.942

C4 3224 0.985 0.955 0.97 0.938

D1H1 382 0.707 0.806 0.753 0.513

D1H2 778 0.9 0.9 0.9 0.819

E1H1 424 0.543 0.758 0.633 0.346

E1H2 800 0.845 0.909 0.876 0.785

H3 1006 0.928 0.972 0.949 0.892
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Figure 5.3: MCC as a function of dataset size for 160 different models. For
each of the ten zinc-binding families, a classifier was trained on 20%, 30%, 40%,
50%, 60%, 70%, 80%, 90% and 100% of the original, unclustered data, and
also a classifier trained on data with sequences clustered by 40%, 50%, 60%,
70%, 80%, 90% and no clustering. Each of these models is shown here, with
their performance (MCC) and size of the dataset used to train them. The two
modes of dataset reduction are shown by different shades and it can be seen that
the curves have an identical distribution. A model’s performance is a function
of its dataset size, regardless of whether any removal of similar sequences is

performed.

In order to identify whether this lowered performance was because the models

performed worse without the possibility of homologous sequences between the

training and test sets, or whether it was a result of the smaller training set, for

each zinc-binding family a classifier was trained on 20%, 30%, 40%, 50%, 60%,

70%, 80%, 90% and 100% of the original, unclustered data, and also a classifier

trained on data with sequences clustered by 40%, 50%, 60%, 70%, 80%, 90% and

with no clustering (see Table 5.5). The performance of the models was then plotted

against the resulting dataset sizes as shown in Figure 5.3. This demonstrates that

it is dataset size that determines model performance, regardless of the similarity

of the sequences in the training and testing datasets. For a given dataset, you
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Table 5.6: Predictive ability of using BLAST alone to predict zinc binding in
protein sequences using homology alone.

Family Dataset Size Recall Precision F1 MCC
C2H2 3960 0.99 0.95 0.97 0.94
C3H1 9710 0.29 0.87 0.44 0.33
C2H1 2154 0.24 0.88 0.37 0.3
D1H1 818 0.05 0.8 0.09 0.11
C3 2868 0.13 0.61 0.21 0.07
E1H1 828 0.06 0.62 0.11 0.06
D1H2 2470 0.03 0.53 0.06 0.01
H3 5058 0.01 0.19 0.02 -0.1
E1H2 2648 0.02 0.33 0.04 -0.06

could predict how well the model trained on it would perform based on dataset

size alone — the similarity of the sequences within that dataset made no difference

when dataset size was held constant.

As an additional means of showing how little effect sequence similarity has on abil-

ity to predict zinc binding, the sequence models were compared with using BLAST

for predicting zinc-binding sites. For each zinc-binding family, a BLAST database

was created using 80% of the available zinc-binding sequences, and BLAST’s abil-

ity to identify zinc binding sites from the remaining 20% was compared against

an equivalently sized negative set. Results are shown in Table 5.6. With the ex-

ception of C2H2, using BLAST to find zinc binding based on homology performs

much worse than the models presented here. Even in the case of C2H2, which

seems to have much more similar sequences in its dataset, the machine learning

model still narrowly outperforms BLAST.

However the models presented here are not intended to be general purpose zinc

binding predictors that detect common properties of all zinc binding sites — they

are family-specific predictors based on the principle that common, specific types of

zinc binding site have more identifiable, consistent properties than do zinc binding

sites in general. As a result, they will not readily detect binding sites of uncommon

zinc-binding families. This abstract predictiveness has been deliberately discarded

to create highly effective models for specific, common families of zinc binding sites.

It is also noteworthy that the binding site itself is a useful unit of prediction using
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Table 5.7: Percentage of genome predicted to be zinc binding by ZincBind-
Predict for an assortment of bacterial genomes. Genomes were acquired from
ensembl [109] in the form of translated polypeptide sequences, with a sequence
labelled as zinc binding if any of the ten models finds at least one zinc binding

site for that sequence/family combination.

Species Percentage of Genome
Predicted Zinc Binding

Campylobacter jejuni 6.4%
Clostridioides difficile 5.8%
Enterococcus faecalis 7.5%
Listeria monocytogenes 7.9%
Mycobacterium tuberculosis 11.3%
Salmonella enterica 11.1%
Shigella flexneri 10.1%
Streptococcus pneumoniae 7.6%

this methodology — even for sequences — rather than individual binding sites.

The models are therefore identifying something biologically real (a zinc binding

site) rather than something which does not actually exist in isolation (a single zinc

binding residue), but which is a useful heuristic in some circumstances.

A demonstration of this can be seen by applying the sequence models to bacterial

genomes to measure the proportion of typical genomes that the models predict

to be zinc binding, as shown for a range of bacterial genomes in Table 5.7. For

most genomes, fewer than 10% of proteins are flagged as zinc binding, with the

average for the genomes examined being 8.46%. Given that the zinc-binding fam-

ilies for which predictors have been generated represent 67.0% of binding sites in

ZincBindDB, this would imply a ‘true’ predicted proportion of 12.6% which is a

little higher than the widely cited figure of 10%.

5.5 Access to Models

The models are available through a web app called ZincBindPredict. This is a

GraphQL API, like the ZincBindDB database API, which allows users to submit

jobs and get the results. A GraphQL request can be sent with either a protein

sequence or protein structure, and a job ID will be returned (see Figure 5.4).
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mutation {
searchSequence(sequence: "INVGHSFHVNFEDNDNRSVL...") {
jobId

}
}

{

"data": {
"searchSequence": {

"jobId": "1601810985030"
}

}

}

Figure 5.4: A mutation from the ZincBindPredict API. Mutations begin with
the mutation identifier to indicate that the top level Mutation object is what
the searchSequence mutation belongs to — queries can begin with query too
but this is optional. Here the sequence is being given as an argument, and the

ID of the job is returned.

This can then be polled for results as the protein or sequence is searched using

each model in turn, with the identified binding sites returned as a list with the

associated probability (see Figure 5.5). Internally, when a protein is submitted a

‘job’ folder is created, using the current UNIX time in milliseconds as the ID. This

job ID is returned to the user, which they can use to query the status of the job,

as a script which runs each of the model in turn runs as a background process and

saves its results to the job’s folder on the server, for inspection by the API.

The ZincBind web interface that was explored in-depth in Chapter 4 also has a

page that allows users to submit jobs using a more human-friendly interface, which

itself consumes the ZincBindPredict API (see Figure 5.6). The user is prompted

to provide the representation of a protein — either as a structure file, a sequence

file, or a FASTA sequence pasted in. They also have the option of only searching

for specific families. Positive results are listed on a results page once the job is

complete, and the number of rejected residue combinations is listed.

5.6 Conclusion

The models created here are highly effective, albeit at a very particular task. They

are not predictors of zinc binding in general, and they will not generally detect

zinc binding sites of obscure families and residue combinations. They were never

intended to. A deliberate trade-off between model effectiveness and model gener-

alisability has been made in order to demonstrate the principal that properties of

binding sites within families are more tightly distributed and hence create more
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{
sequenceJob(id: "1601810985030") {
rejectedSites {

residues probability family
}

}
}

{

"data": {
"sequenceJob": {

"rejectedSites": [
{
"residues": 

"maedldelldeveskfctpdllrrgmveqpkgcgggthssdrnqakaketlrstetfkkeddldslineile
epnldkkpsklkskssgntsvrasieglgkscspvylggssipcgigtniswracdhlrciacdflvvsyddy

mwdkscdylffrnnmpefhklkaklikkkgtrayaCqCswrtieevtdlqtdhqlrwvCgkh",
"probability": 0.945,
"family": "C3"

},
{

"residues": 
"maedldelldeveskfctpdllrrgmveqpkgcgggthssdrnqakaketlrstetfkkeddldslineile
epnldkkpsklkskssgntsvrasieglgkscspvylggssipcgigtniswracdhlrciacdflvvsyddy

mwdkscdylffrnnmpefhklkaklikkkgtrayaCqCswrtieevtdlqtdhqlrwvCgkH",
"probability": 0.912,

"family": "C3H1"
},
{

"residues": 
"maedldelldeveskfctpdllrrgmveqpkgcgggthssdrnqakaketlrstetfkkeddldslineile

epnldkkpsklkskssgntsvrasieglgkscspvylggssipcgigtniswracdhlrciacdflvvsyddy
mwdkscdylffrnnmpefhklkaklikkkgtrayaCqcswrtieevtdlqtdhqlrwvCgkH",

"probability": 0.9,

"family": "C2H1"
},

...

Figure 5.5: A query for the results of a ZincBindPredict job. The ID of the
job is supplied, and this particular query requests the status of the job, as well
the predicted sites. The rejected sites can also be requested, but since they are
quite numerous, typically the flexibility of GraphQL in allowing you to choose

to omit them is useful in conserving network resources.

Figure 5.6: The prediction page on the ZincBind web interface, and an
example of a predicted zinc binding site in a protein sequence.

accurate models. These models also detect something biologically real — full bind-

ing sites — rather than individual zinc binding residues which, as discussed, are

an artificial concept.

However, this downside is not necessarily permanent. The models are limited

to these ten models because these are the families for which there is sufficient

(only just, in the case of some of the sequence models) data to train a classifier.

However, the data in ZincBind is constantly growing thanks to the automated

database update scripts in place. Over time, the eleventh-placed model will acquire

enough data to warrant a model, and then the twelfth, and so on. The dataset-

size threshold for training is not relative to the total size of the database, it is an
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absolute amount, and so over time more and more families will be able to have

models trained for them, and the models will become more comprehensive of zinc

binding generally. The benefits of this trade-off are permanent — the deficiencies

are temporary.



Chapter 6

Conclusion

This PhD has been an investigation into the properties of high affinity zinc binding

sites in proteins, and the extent to which these properties can be used to create

predictive models of zinc binding from protein structures or protein sequences.

Investigations of this kind into the nature of zinc binding are of importance at a

basic research level, and in a direct medical sense. Understanding the geometric

and biochemical properties of zinc binding sites offers insights into how they func-

tion — whether that function is catalytic or structure stabilising. Correspondingly,

being able to determine whether a protein binds zinc can offer insights into what

the function of that protein is, particularly if the location can be determined too.

This is particularly effective in models which can predict from sequence, because

entire genomes can be screened in minutes or hours to identify what zinc binding

proteins might be present. Medically, the association of pathological zinc binding,

particularly in the eye, is a demonstration of how vital a detailed understand-

ing of the mechanisms of zinc binding is to understanding these diseases, and in

how predicting the locations of binding sites can be used to aid pharmaceutical

interventions.

This project, while an interesting intellectual exercise in and of itself, has been

carried out with these crucial benefits to our understanding of the role of zinc in

protein functions in health and disease at all times.

106
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Understanding of the properties of zinc binding has been expanded by creating

a more comprehensive database of all known zinc binding sites than previous

research has created. The key properties and characteristics gleaned from Chapter

4 largely expanded in more detail on some properties that were already commented

upon by previous works, albeit at a larger scale.

Probably a much more fundamental contribution to the future of this field, is the

existence of ZincBindDB: not as a closed dataset that exists on a PhD Researcher’s

laptop and which can possibly, after an exchange of emails, be made available to

other individuals — but rather a web accessible, continually updated resource that

has both a web API and web interface. The vast majority of previous research of

this kind has resulted in datasets of the former kind, which are not easily shared

among researchers and which are, in any case, static once created. The data

generated here is very easily accessed by any researcher in the world without the

need for my involvement at all, and will continue to be updated with the very

latest zinc binding structures indefinitely.

Similarly, those previous works which did result in a web interface have almost all

ceased to exist. Even relatively recent papers from the mid-2010s contain URLs

which, when accessed in 2021, point to nothing. Nobody can guarantee that they

will maintain a service forever — particularly in the academic sciences where such

services are funded by single standalone grants rather than revenue generated by

those services. In this case however, all components of ZincBind are open source,

cloneable, and reproducible. Even if neither I nor my lab continued to maintain

ZincBind (it is currently very much the intention to do so), another researcher

could recreate both the services and the data they contained very easily via the

GitHub repositories and Docker images [110, 111], rather than having to recreate

from scratch using the Methods section of a paper.

Over the long term, the particular insights into the properties of zinc binding

that this PhD has uncovered will be expanded upon and may in some instances

be superseded, but the long term presence and availability of this dataset via

ZincBind may yet be the most important lasting contribution to the field of zinc

binding.
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The machine learning component of the PhD has, like the database creation

component, built upon previous, similar studies. Here however the difference in

methodology has been more stark. From the outset, I deliberately departed from

two ubiquitous assumptions that these previous works made: that zinc binding

was best detected at the individual residue level, and that the properties of zinc

binding sites did not vary much between sub-categories of binding site. By making

this tradeoff of only searching for a subset of zinc binding sites, you can achieve

superior results in the prediction of zinc binding, and that this tradeoff will become

less severe as time passes and the size of the underlying database grows.

Finally, this PhD has resulted in the creation of the Python library atomium for

processing PDB structures. This library is already seeing use in the wider field

and will continue to be updated with features.

6.1 Next Steps

It is worth examining, in closing, what the logical next steps would be were this

project to continue. One very useful extension has already been remarked upon

in chapter 5 and indeed will likely happen with very little input from the author

or anyone else — the expansion of the predictive models beyond the existing ten.

As chapter 5 explained in detail, there is currently enough data to justify these

ten, but insufficient data for any more. As ZincBindDB is automatically updated

every week from the Protein Data Bank, over time other families will cross the

threshold of data size for these to have predictive models too, and the coverage of

the models will gradually increase. This will simply require retraining the models,

and adding families to the .dat file used by the build scripts. This will improve

the usefulness of the tools over time.

Another possible expansion of the work done here that would have a rather high

resultant benefit to effort required ratio, would be to expand beyond just zinc, to

other metals. Because the primary objective of the original database creation was

to identify properties of zinc binding sites, no previously identified properties were

used in creating the database — the build scripts simply looks for PDB ligands

with the name ZN and identifies binding sites for them based on general principles



Chapter 6. Conclusion 109

of atomic interactions (sensible atom distance thresholds, minimum angles for

atom clashing, etc.). Because nothing about this is specific to zinc, everything

done here could just as easily be done for, as an example, copper, or iron. The

only restriction used in looking for liganding atoms was the rejection of carbon as

a possible liganding atom, but this will be true of all metals. Once this database of

all transition metal binding sites were created, likewise creating predictive models

for them would also require little to no changes to the already developed codebases.

This was not done as part of this PhD to keep it tightly focused on the original

research question and not allow for ‘mission creep’ — but it would greatly increase

the usefulness of the already developed code with very little extra work.

An additional possible future avenue for research would be to try and create pre-

dictive models of a particular kind of zinc binding site - partial binding sites. These

are those binding sites formed of multiple protein chains, in which often the zinc

contributes to the oligomerisation of multiple subunits. Predicting these would be

particularly useful in the aforementioned pathological aggregation of proteins in

the presence of zinc, which is caused by cryptic half-binding sites in the proteins in

question. Creating models that detect these is a much more difficult proposition,

because it is very difficult to create a correctly labelled dataset. Positive samples

are easily enough identified from ZincBindDB by filtering binding sites to include

those from multiple chains — although they are less numerous than the single

chain sites used here. Identifying negative samples is much more difficult though.

The very nature of these sites means that unless a protein is crystallised in the

presence of zinc and in the presence of a protein chain that could make up the

other half of a binding site, it will go undetected. There is no easy way to reliably

confirm that a pair of residues in a structure could not form a half binding site,

simply because it does not in a particular structure, which means the methodol-

ogy used here would not be suitable. That is not to say there is not path towards

doing this, but unlike the previous two proposed future extensions, this could not

be done by simply making superficial changes to existing code.

Other suggested features have been made by various interested parties over the

course of the PhD — automatic classification of binding sites as structural or

catalytic (sites are not labelled as such in PDB files, but they seem to have very
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different properties so a dataset could be constructed with some effort), and predic-

tion of binding site affinity (again this might be limited by the amount of available

experimental data) to name two that would be of particular use.

Ultimately the best way to decide how future effort would best be spent is to be

guided by the actual needs of people using the existing tools. All of the software

created as part of this project is open source, and available on GitHub with its

associated issue trackers and feature request managers. These offer a much more

concrete guide to what would be most useful to the community, and is broadly

the approach that will be taken in future. Indeed this decision to make every

part of the project open to the community will hopefully be what makes ZincBind

long-lasting in the way that its predecessors never were.

Embracing Open Science is the best way to sustain non-profit scientific software —

it is this priniple which has guided this PhD from the beginning, and will continue

to guide ZincBind into the future.



Appendix A

Publications and Talks

A.1 Published Papers

The following papers have been published from this PhD:

A.1.1 ZincBind—the database of zinc binding sites

5 February 2019

Sam M Ireland, Andrew C R Martin

GitHub: github.com/samirelanduk/zincbinddb

Docker: hub.docker.com/r/samirelanduk/zincbinddb_django

Abstract: Zinc is one of the most important biologically active metals. Ten per

cent of the human genome is thought to encode a zinc binding protein and its

uses encompass catalysis, structural stability, gene expression and immunity. At

present, there is no specific resource devoted to identifying and presenting all

currently known zinc binding sites. Here we present ZincBind, a database of zinc

binding sites and its web front-end. Using the structural data in the Protein Data

Bank, ZincBind identifies every instance of zinc binding to a protein, identifies

its binding site and clusters sites based on 90% sequence identity. There are

currently 24 992 binding sites, clustered into 7489 unique sites. The data are
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available over the web where they can be browsed and downloaded, and via a

REST API. ZincBind is regularly updated and will continue to be updated with

new data and features.

A.1.2 atomium—a Python structure parser

11 February 2020

Sam M Ireland, Andrew C R Martin

GitHub: github.com/samirelanduk/atomium

Documentation: atomium.bio

Abstract: Structural biology relies on specific file formats to convey information

about macromolecular structures. Traditionally this has been the PDB format, but

increasingly newer formats, such as PDBML, mmCIF and MMTF are being used.

Here we present atomium, a modern, lightweight, Python library for parsing, ma-

nipulating and saving PDB, mmCIF and MMTF file formats. In addition, we pro-

vide a web service, pdb2json, which uses atomium to give a consistent JSON rep-

resentation to the entire Protein Data Bank. atomium is implemented in Python

and its performance is equivalent to the existing library BioPython. However, it

has significant advantages in features and API design. atomium is available from

atomium.bioinf.org.uk and pdb2json can be accessed at pdb2json.bioinf.org.uk.

A.1.3 Zincbindpredict—Prediction of Zinc Binding Sites

in Proteins

12 February 2021

Sam M Ireland, Andrew C R Martin

GitHub: github.com/samirelanduk/zincbindpredict

Docker: hub.docker.com/r/samirelanduk/zincbindpredict_django

github.com/samirelanduk/atomium
atomium.bio
github.com/samirelanduk/zincbindpredict
hub.docker.com/r/samirelanduk/zincbindpredict_django
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Abstract: Zinc binding proteins make up a significant proportion of the proteomes

of most organisms and, within those proteins, zinc performs rôles in catalysis and

structure stabilisation. Identifying the ability to bind zinc in a novel protein

can offer insights into its functions and the mechanism by which it carries out

those functions. Computational means of doing so are faster than spectroscopic

means, allowing for searching at much greater speeds and scales, and thereby guid-

ing complimentary experimental approaches. Typically, computational models of

zinc binding predict zinc binding for individual residues rather than as a single

binding site, and typically do not distinguish between different classes of binding

site—missing crucial properties indicative of zinc binding. Previously, we created

ZincBindDB, a continuously updated database of known zinc binding sites, cat-

egorised by family (the set of liganding residues). Here, we use this dataset to

create ZincBindPredict, a set of machine learning methods to predict the most

common zinc binding site families for both structure and sequence. The models

all achieve an MCC ≥ 0.88, recall ≥0.93 and precision ≥0.91 for the structural

models (mean MCC = 0.97), while the sequence models have MCC ≥ 0.64, recall

≥0.80 and precision ≥0.83 (mean MCC = 0.87), with the models for binding sites

containing four liganding residues performing much better than this. The predic-

tors outperform competing zinc binding site predictors and are available online

via a web interface and a GraphQL API.

A.2 Talks and Presentations

This PhD has been presented on the following occasions:

• 12 June 2018 — ISMB Graduate Symposium.

• 22 February 2019 — ISMB Friday Wrap.

• 24 January 2020 — GRC Metals in Biology Conference, Ventura, California.

• 6 March 2020 — ISMB Friday Wrap.

• 11 October 2020 — Exscientia (remote presentation).

• 15 October 2020 — Vernalis (remote presentation).
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• 15 January 2021 — ISMB Friday Wrap (remote presentation).



Appendix B

atomium Documentation

atomium is a Python library for opening and saving .pdb, .cif and .mmtf files,

and presenting and manipulating the information contained within. The rationale

behind its development and details of its core concepts were outlined in Chapter

3 — this Appendix gives examples of its use in practice. The full documentation

is at atomium.bio.

B.1 Loading Data

While you can use atomium to create models from scratch to build an entirely de

novo structure, in practice you would generally use it to load molecular data from

an existing file...

>>> import atomium

>>> pdb1 = atomium.open(‘../1LOL.pdb’)

>>> mmtf1 = atomium.open(‘/structures/glucose.mmtf’)

>>> cif1 = atomium.open(‘/structures/1XDA.cif’)

>>> pdb3 = atomium.open(‘./5CPA.pdb.gz’)

>>> pdb2 = atomium.fetch(‘5XME.pdb’)

>>> cif2 = atomium.fetch(‘5XME’)

In that latter case, you don’t need the file to be saved locally — it will just go and

grab the PDB with that code from the RCSB.
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atomium will use the file extension you provide to decide how to parse it. If there

isn‘t one, or it doesn’t recognise the extension, it will peek at the file contents and

try and guess whether it should be interpreted as .pdb, .cif or .mmtf.

B.2 Using Data

Once you’ve got your File object, what can you do with it?

B.2.1 Annotation

There is meta information contained within the File object:

>>> pdb1.title

‘CRYSTAL STRUCTURE OF OROTIDINE MONOPHOSPHATE DECARBOXYLASE COMPLEX WITH XMP’

>>> pdb1.deposition_date

datetime.date(2002, 5, 6)

>>> pdb1.keywords

[‘TIM BARREL‘, ‘LYASE’]

>>> pdb1.classification

‘LYASE’

>>> pdb1.source_organism

‘METHANOTHERMOBACTER THERMAUTOTROPHICUS STR. DELTA H’

>>> pdb1.resolution

1.9

>>> pdb1.rvalue

0.193

>>> pdb1.rfree

0.229

B.2.2 Models and Assembly

All .pdb files contain one or more models — little universes containing a molecular

scene.
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>>> pdb1.model

<Model (2 chains, 4 ligands)>

>>> pdb1.models

(<Model (2 chains, 4 ligands)>,)

Most just contain one — it’s generally those that come from NMR experiments

which contain multiple models. You can easily iterate through these to get their

individual metrics:

>>> for model in pdb2.models:

print(model.center_of_mass)

This model contains the ‘asymmetric unit’ — this is one or more protein (usually)

chains arranged in space, which may not be how the molecule arranges itself in

real life. It might just be how they arranged themselves in the experiment. To

create the ‘real thing’ from the asymmetric unit, you use biological assemblies.

Most .pdb files contain one or more biological assemblies — instructions for how

to create a more realistic structure from the chains present, which in atomium are

accessed using File.assemblies.

In practice, what you need to know is that you can create a new model (not the

one already there containing the asymmetric unit) as follows...

>>> pdb3 = atomium.fetch(‘1XDA’)

>>> pdb3.model

<Model (8 chains, 16 ligands)>

>>> pdb3.generate_assembly(1)

<Model (2 chains, 4 ligands)>

>>> pdb3.generate_assembly(10)

<Model (6 chains, 12 ligands)>

>>> [pdb.generate_assembly(n + 1) for n in range(len(pdb.assemblies))]

[<Model (2 chains, 4 ligands)>, <Model (2 chains, 4 ligands)>, <Model (2 cha

ins, 4 ligands)>, <Model (2 chains, 4 ligands)>, <Model (12 chains, 24 ligan

ds)>, <Model (12 chains, 24 ligands)>, <Model (6 chains, 12 ligands)>, <Mode

l (6 chains, 12 ligands)>, <Model (6 chains, 12 ligands)>, <Model (6 chains,

12 ligands)>, <Model (4 chains, 8 ligands)>, <Model (4 chains, 8 ligands)>]
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Here you load a .pdb with multiple possible assemblies, have a quick look at the

asymmetric unit with 1,842 atoms, and then generate first , and then all, of its

possible biological assemblies by passing in their IDs.

B.2.3 Model Contents

The basic structures within a model are chains, residues, ligands, and atoms.

>>> pdb1.model.chains()

{<Chain A (204 residues)>, <Chain B (214 residues)>}

>>> pdb1.model.chain(‘B’)

<Chain B (214 residues)>

>>> pdb1.model.residues(name=‘TYR’)

{<Residue TYR (A.37)>, <Residue TYR (B.1037)>, <Residue TYR (A.45)>, <Residu

e TYR (A.154)>, <Residue TYR (B.1206)>, <Residue TYR (B.1154)>, <Residue TYR

(B.1045)>, <Residue TYR (A.206)>}

>>> pdb1.model.residues(name__regex=‘TYR|PRO’)

{<Residue PRO (A.101)>, <Residue PRO (A.46)>, <Residue PRO (A.161)>, <Residu

e TYR (A.45)>, <Residue PRO (B.1046)>, <Residue TYR (A.154)>, <Residue TYR (

B.1206)>, <Residue TYR (B.1045)>, <Residue PRO (B.1189)>, <Residue TYR (A.37

)>, <Residue PRO (B.1129)>, <Residue PRO (B.1077)>, <Residue PRO (A.211)>, <

Residue PRO (B.1180)>, <Residue PRO (B.1157)>, <Residue PRO (B.1211)>, <Resi

due PRO (B.1228)>, <Residue PRO (B.1101)>, <Residue TYR (B.1154)>, <Residue

PRO (A.157)>, <Residue PRO (A.77)>, <Residue PRO (A.180)>, <Residue TYR (B.1

037)>, <Residue PRO (A.129)>, <Residue PRO (B.1161)>, <Residue TYR (A.206)>}

>>> pdb1.model.chain(‘B‘).residue(‘B.1206’)

<Residue TYR (B.1206)>

>>> pdb1.model.chain(‘B‘).residue(‘B.1206’).helix

True

>>> pdb1.model.ligands()

{<Ligand BU2 (A.5001)>, <Ligand XMP (A.2001)>, <Ligand BU2 (B.5002)>, <Ligan

d XMP (B.2002)>}

>>> pdb1.model.ligand(name=‘BU2’).atoms()

{<Atom 3196 (O3)>, <Atom 3192 (C1)>, <Atom 3193 (O1)>, <Atom 3197 (C4)>, <At

om 3194 (C2)>, <Atom 3195 (C3)>}

>>> pdb1.model.ligand(name=‘BU2’).atoms(mass__gt=12)

{<Atom 3196 (O3)>, <Atom 3192 (C1)>, <Atom 3193 (O1)>, <Atom 3197 (C4)>, <At

om 3194 (C2)>, <Atom 3195 (C3)>}

>>> pdb1.model.ligand(name=‘BU2’).atoms(mass__gt=14)
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{<Atom 3196 (O3)>, <Atom 3193 (O1)>}

The examples above demonstrate atomium’s selection language. In the case of

the molecules — Model, Chain, Residue and Ligand — you can pass in an id or

name, or search by regex pattern with id regex or name regex.

These structures have an even more powerful syntax too — you can pass in any

property such as charge=1, any comparitor of a property such as mass lt=100,

or any regex of a property such as name regex=‘[Ĉ]’.

For pairwise comparisons, structures also have the .AtomStructure.pairwise atoms

generator which will yield all unique atom pairs in the structure. These can ob-

viously get very big indeed — a 5000 atom PDB file would have about 12 million

unique pairs.

Structures can be moved around and otherwise compared with each other...

pdb1.model.ligand(id=‘B:2002’).mass

351.1022

>>> pdb1.model.ligand(id=‘B.2002’).formula

Counter({‘C’: 10, ‘O’: 9, ‘N’: 4, ‘P’: 1})

>>> pdb1.model.ligand(id=‘B:2002’).nearby_atoms(2.8)

{<Atom 3416 (O)>, <Atom 3375 (O)>, <Atom 1635 (OD1)>}

>>> pdb1.model.ligand(id=‘B.2002’).nearby_atoms(2.8, name=‘OD1’)

{<Atom 1635 (OD1)>}

>>> pdb1.model.ligand(id=‘B.2002’).nearby_residues(2.8)

{<Residue ASP (B.1020)>}

>>> pdb1.model.ligand(id=‘B.2002’).nearby_structures(2.8, waters=True)

{<Residue ASP (B.1020)>, <Water HOH (B.3155)>, <Water HOH (B.3059)>}

>>> import math

>>> pdb1.model.ligand(id=‘B.2002’).rotate(math.pi / 2, ‘x’)

>>> pdb1.model.ligand(id=‘B.2002’).translate(10, 10, 15)

>>> pdb1.model.ligand(id=‘B.2002’).center_of_mass

(-9.886734282781484, -42.558415679537184, 77.33400578435568)

>>> pdb1.model.ligand(id=‘B.2002’).radius_of_gyration

3.6633506511540825

>>> pdb1.model.ligand(id=‘B.2002’).rmsd_with(pdb1.model.ligand(id=‘A.2001’))

0.133255572356
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Here we look at one of the ligands, identify its mass and molecular formula, look at

what atoms are within 2.8 Åof it, and what residues are within that same distance,

rotate it and translate it through space, see where its new center of mass is, and

then finally get its RMSD with the other similar ligand in the model.

Any operation which involves identifying nearby structures or atoms can be

sped up — dramatically in the case of very large structures — by calling

.Model.optimise distances on the Model first. This prevents atomium from

having to compare every atom with every other atom every time a proximity check

is made.

The Atom objects themselves have their own useful properties.

>>> pdb1.model.atom(97)

<Atom 97 (CA)>

>>> pdb1.model.atom(97).mass

12.0107

>>> pdb1.model.atom(97).anisotropy

[0, 0, 0, 0, 0, 0]

>>> pdb1.model.atom(97).bvalue

24.87

>>> pdb1.model.atom(97).location

(-12.739, 31.201, 43.016)

>>> pdb1.model.atom(97).distance_to(pdb1.model.atom(1))

26.18289982030257

>>> pdb1.model.atom(97).nearby_atoms(2)

{<Atom 96 (N)>, <Atom 98 (C)>, <Atom 100 (CB)>}

>>> pdb1.model.atom(97).is_metal

False

>>> pdb1.model.atom(97).structure

<Residue ASN (A.23)>

>>> pdb1.model.atom(97).chain

<Chain A (204 residues)>

Chains are a little different from other structures in that they are iterable, index-

able, and return their residues as a tuple, not a set...

>>> pdb1.model.atom(97).chain
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<Chain A (204 residues)>

>>> pdb1.model.chain(‘A’)

<Chain A (204 residues)>

>>> len(pdb1.model.chain(‘A’))

204

>>> pdb1.model.chain(‘A’)[10]

<Residue LEU (A.21)>

>>> pdb1.model.chain(‘A’).residues()[:5]

(<Residue VAL (A.11)>, <Residue MET (A.12)>, <Residue ASN (A.13)>, <Residue

ARG (A.14)>, <Residue LEU (A.15)>)

>>> pdb1.model.chain(‘A’).sequence

‘LRSRRVDVMDVMNRLILAMDLMNRDDALRVTGEVREYIDTVKIGYPLVLSEGMDIIAEFRKRFGCRIIADFKVAD

IPETNEKICRATFKAGADAIIVHGFPGADSVRACLNVAEEMGREVFLLTEMSHPGAEMFIQGAADEIARMGVDLGV

KNYVGPSTRPERLSRLREIIGQDSFLISPGVGAQGGDPGETLRFADAIIVGRSIYLADNPAAAAAGIIESIKDLLI’

The sequence is the ‘real’ sequence that exists in nature. Some of them will be

missing from the model for practical reasons.

Residues can generate name information based on their three letter code, and are

aware of their immediate neighbors.

>>> pdb1.model.residue(‘A.100’)

<Residue PHE (A.100)>

>>> pdb1.model.residue(‘A.100’).name

‘PHE’

>>> pdb1.model.residue(‘A.100’).code

‘F’

>>> pdb1.model.residue(‘A.100’).full_name

‘phenylalanine’

>>> pdb1.model.residue(‘A.100’).next

<Residue PRO (A.101)>

>>> pdb1.model.residue(‘A.100’).previous

<Residue GLY (A.99)>

B.3 Saving Data

A model can be saved to file using:
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>>> model.save(‘new.cif’)

>>> model.save(‘new.pdb’)

Any structure can be saved in this way, so you can save chains or molecules to

their own seperate files if you so wish.

>>> model.chain(‘A’).save(‘chainA.pdb’)

>>> model.chain(‘B’).save(‘chainB.cif’)

>>> model.ligand(name=‘XMP’).save(‘ligand.mmtf’)

Note that if the model you are saving is one from a biological assembly, it will

likely have many duplicated IDs, so saving to file may create unexpected results.
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